Please wait a minute...
E-mail Alert Rss
 
物探与化探  2023, Vol. 47 Issue (2): 420-428    DOI: 10.11720/wtyht.2023.1175
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
地震分频迭代反演在薄层河道砂体预测中的应用
任宪军1(), 李钟2(), 马应龙3, 董萍4, 田行达5
1.中国石化东北油气分公司 勘探开发研究院,吉林 长春 130062
2.中海油田服务公司 物探事业部研究院特普数据中心,广东 湛江 524057
3.中石油塔里木油田 勘探开发研究院,新疆 库尔勒 841000
4.华北油田公司 第三采油厂工程技术研究所,河北 沧州 062450
5.长江地球物理探测(武汉)有限公司,湖北 武汉 430010
Application of seismic frequency-divided iterative inversion in the prediction of thinly laminated channel sand bodies
REN Xian-Jun1(), LI Zhong2(), MA Ying-Long3, DONG Ping4, TIAN Xing-Da5
1. Exploration and Development Research Institute,Sinopec Northeast Oil and Gas Company,Changchun 130062,China
2. Data Processing Center(Zhanjiang),Research Institute,Geophysical Branch,China Oilfield Services Limited,CNOOC,Zhanjiang 524057,China
3. Research Institute of Exploration Development,PetroChina Tarim Oilfield Company,Kuerle 841000,China
4. Engineering Technology Research Institute,No. 3 Oil Production Plant of Huabei Oilfileld Company,Cangzhou 062450,China
5. Changjiang Geophysical Exploration & Testing Co.,Ltd.,Wuhan 430010,China
全文: PDF(6781 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

龙凤山地区河道砂储层符合典型岩性油气藏特征,其砂体厚度薄、河道窄、岩性纵横向非均质性强,对5 m以下储层预测难度大。分频迭代反演充分利用全频段地震资料,对不同频段、尺度的地震信息逐级传递,优化反演结果。文中具体利用匹配追踪算法实现地震信号频段划分得到不同尺度地震数据体,在测井约束下,以低频大尺度的反演结果作为下一级频段反演的初始模型,调整反演结果;在反演过程中,通过相关算法自适应选取子波,增强反演准确性,基于贝叶斯理论自适应选取正则化参数,调节分辨率和稳定性关系达到最佳平衡,避免反演出现混沌现象。2019年该区新钻四口井钻遇营城组1-2-6和1-2-8小层的气层,同反演预测结果吻合。证明本文方法相较于常规分频反演而言,具有反演精度高、忠实于地震信息、频段应用充分的优点,可以有效提高薄层河道砂的识别能力,指导相关岩性油气藏的勘探开发。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
任宪军
李钟
马应龙
董萍
田行达
关键词 薄层河道砂匹配追踪分频迭代反演    
Abstract

The channel sand reservoirs in the Longfengshan area have the characteristics of typical lithologic reservoirs.This area has thin sand bodies,narrow channels,and strong vertical and horizontal lithologic heterogeneity.It is difficult to predict the reservoirs at a depth of 5 m or greater.The frequency-divided iterative inversion can fully utilize the full-frequency band seismic data and transmit the seismic information of different frequency bands and scales step by step,thus optimizing the inversion results.In this study,the seismic signal frequency bands were divided using the matching pursuit algorithm to obtain seismic data volumes of different scales.Under the constraints of log data,the low-frequency,large-scale inversion results were used as the initial model for the next-order frequency band inversion,and the inversion results.During the inversion,wavelets were adaptively selected using the correlation algorithm to enhance the inversion accuracy.Regularization parameters were adaptively selected based on the Bayesian theory to adjust the relationship between resolution and stability to achieve the optimal balance and avoid chaos in inversion.In 2019,gas reservoirs in subzones 1-2-6 and 1-2-8 of the Yingcheng Formation were encountered in the drilling of four wells in the Longfengshan area.This result is consistent with the inversion prediction results.Therefore,compared with conventional frequency division inversion,the method proposed in this study has the advantages of high inversion accuracy,coincidence with seismic information,and full application of frequency bands.This method can effectively improve the identification performance of thinly laminated channel sand bodies and guide the exploration and development of related lithologic reservoirs.

Key wordsthinly laminated channel sand    matching pursuit    frequency-divided iterative inversion
收稿日期: 2022-04-19      修回日期: 2023-02-01      出版日期: 2023-04-20
ZTFLH:  P631.4  
基金资助:国家自然科学基金项目“裂缝性储层地震定量预测及流体识别方法研究”(41974124)
通讯作者: 李钟(1996-),男,汉族,中国石油大学(北京)硕士研究生毕业,主要进行地震解释和储层预测研究工作。Email:2643539019@qq.com
引用本文:   
任宪军, 李钟, 马应龙, 董萍, 田行达. 地震分频迭代反演在薄层河道砂体预测中的应用[J]. 物探与化探, 2023, 47(2): 420-428.
REN Xian-Jun, LI Zhong, MA Ying-Long, DONG Ping, TIAN Xing-Da. Application of seismic frequency-divided iterative inversion in the prediction of thinly laminated channel sand bodies. Geophysical and Geochemical Exploration, 2023, 47(2): 420-428.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2023.1175      或      https://www.wutanyuhuatan.com/CN/Y2023/V47/I2/420
Fig.1  分频反演技术流程
Fig.2  地震信号的多尺度性
a—地震道频谱分析;b—地震剖面;c—井旁道时频谱分析
Fig.3  子波优选流程
Fig.4  井曲线和地震记录
Fig.5  井旁道时频谱
Fig.6  反演前后分频记录对比
Fig.7  各尺度反演结果
Fig.8  地震数据多尺度分解(左)与反演剖面(右)对比
a—大尺度(5~38 Hz);b—中尺度(38~70 Hz);c—小尺度(70~110 Hz)
Fig.9  靶区分频迭代反演(a)和常规分频反演(b)的对比(图中曲线为自然伽马曲线)
Fig.10  靶区分频迭代反演过井剖面与测井对比(图中曲线为全烃曲线)
Fig.11  靶区营城组1-2-6砂体厚度
[1] 于建国, 韩文功, 刘力辉. 分频反演方法及应用[J]. 石油地球物理勘探, 2006, 41(2):193-197.
[1] Yu J G, Han W G, Liu L H. Crossover inversion method and application[J]. Oil Geophysical Prospecting, 2006, 41(2):193-197.
[2] 吴媚, 李维新, 符力耘. 基于测井曲线分频分析的地震反演[J]. 石油地球物理勘探, 2007, 42(S1):65-71.
[2] Wu M, Li W X, Fu L Y. Seismic inversion based on logging curve crossover analysis[J]. Oil Geophysical Prospecting, 2007, 42(S1):65-71.
[3] 龚洪林, 王振卿, 蔡刚, 等. 分频解释技术在碳酸盐岩储层预测中应用[J]. 西南石油大学学报:自然科学版, 2007, 29(S1):5-8.
[3] Gong H L, Wang Z Q, Cai G, et al. Application of crossover interpretation technique in carbonate reservoir prediction[J]. Journal of Southwest Petroleum University:Natural Science Edition, 2007, 29(S1):5-8.
[4] 王振卿, 王宏斌, 张虎权, 等. 分频波阻抗反演技术在塔中西部台内滩储层预测中的应用[J]. 天然气地球科学, 2014, 25(11):171-178.
[4] Wang Z Q, Wang H B, Zhang H Q, et al. Application of crossover wave impedance inversion technology in reservoir prediction of Tainei Bund in the western of Tazhong[J]. Natural Gas Geoscience, 2014, 25(11):171-178.
[5] 朱超, 刘占国, 杨少勇, 等. 利用相控分频反演预测英西湖相碳酸盐岩储层[J]. 石油地球物理勘探, 2018, 53(4):187-196.
[5] Zhu C, Liu Z G, Yang S Y, et al. Prediction of Yingxi Lake phase carbonate reservoir by phased crossover inversion[J]. Oil Geophysical Prospecting, 2018, 53(4):187-196.
[6] 倪祥龙, 黄成刚, 杜斌山, 等. 盆缘凹陷区甜点储层主控因素与源下成藏模式——以柴达木盆地扎哈泉地区渐新统为例[J]. 中国矿业大学学报, 2019, 48(1):156-167.
[6] Ni X L, Huang C G, Du B S, et al. Main controlling factors of sweet spot reservoir in basin margin depression and reservoir forming model under source:Taking Oligocene in Zhahaquan area,Qaidam basin as an example[J]. Journal of China University of Mining and Technology, 2019, 48(1):156-167.
[7] 代玲, 万钧, 罗泽. 分频反演精细储层预测[J]. 中外能源, 2021, 26(12):48-53.
[7] Dai L, Wan J, Luo Z. Detailed reservoir prediction of crossover inversion[J]. Sino-Foreign Energy, 2021, 26(12):48-53.
[8] 肖曦. 分频迭代宽频反演方法在储层预测中的应用[J]. 地球物理学进展, 2021, 36(1):294-299.
[8] Xiao X. Application of crossover iterative broadband inversion method in reservoir prediction[J]. Progress in Geophysics, 2021, 36(1):294-299.
[9] 黄捍东, 张如伟, 魏世平. 地震非线性随机反演方法在陆相薄砂岩储层预测中的应用[J]. 石油学报, 2009, 30(3):386-390.
doi: 10.7623/syxb2009011
[9] Huang H D, Zhang R W, Wei S P. Application of seismic nonlinear stochastic inversion method in prediction of continental thin sandstone reservoirs[J]. Acta Petroleum Sinica, 2009, 30(3):386-390.
[10] 印兴耀, 裴松, 李坤, 等. 多尺度快速匹配追踪多域联合地震反演方法[J]. 地球物理学报, 2020, 63(9):3431-3441.
[10] Yin X Y, Pei S, Li K, et al. Multi-domain joint seismic inversion method for multi-scale rapid matching tracking[J]. Chinese Journal of Geophysics, 2020, 63(9):3431-3441.
[11] Mallat S G. A theory for multiresolution signal decomposition:The wavelet representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11(7):674-693.
doi: 10.1109/34.192463
[12] Daubechies I. Orthonormal bases of compactly supported wavelets[J]. Communications on Pure and Applied Mathematics, 1988, 41(7):909-996.
doi: 10.1002/(ISSN)1097-0312
[13] 张繁昌, 李传辉. 非平稳地震信号匹配追踪时频分析[J]. 物探与化探, 2011, 35(4):120-126.
[13] Zhang F C. LI C H. Time-frequency analysis of non-stationary seismic signals by matching pursuit[J]. Geophysical and Geochemical Exploration, 2011, 35(4):120-126.
[14] 陈姝荞. 匹配追踪算法在地震资料处理中的应用[D]. 北京: 中国石油大学(北京), 2018.
[14] Chen S Q. Application of matching tracking algorithm in seismic data processing[D]. Beijing: China University of Petroleum(Beijing), 2018.
[15] Liu J, Marfurt K J. Matching pursuit decomposition using Morlet wavelets[C]// SEG Technical Program Expanded Abstracts, 1949, 24:786.
[16] Wang Y H. Seismic-time frequency spectral decomposition by matching pursuit[J]. Geophysics, 2007, 72(1):13-20
[17] 黄捍东, 郭飞, 汪佳蓓, 等. 高精度地震时频谱分解方法及应用[J]. 石油地球物理勘探, 2012, 47(5):773-780.
[17] Huang H D, Guo F, Wang J B, et al. Spectral decomposition method and application of high-precision seismic time[J]. Oil Geophysical Prospecting, 2012, 47(5):773-780.
[1] 李栋, 朱博华. 基于上覆地层频率约束的匹配追踪强反射层分离方法[J]. 物探与化探, 2023, 47(5): 1261-1272.
[2] 陈珊, 徐兴友, 罗晓玲, 白静, 刘力辉, 陆蓉. 基于改进匹配追踪算法的时频属性在薄储层沉积微相研究中的应用[J]. 物探与化探, 2018, 42(5): 1006-1012.
[3] 安鹏, 张延庆, 于志龙, 党虎强, 李旭航, 宋宇东. 基于“匹配追踪”算法的T2强反射层影响去除技术应用[J]. 物探与化探, 2016, 40(5): 955-960.
[4] 刘汉卿, 张繁昌, 代荣获, 印兴耀. 动态匹配追踪中利用连续相位求取瞬时频率[J]. 物探与化探, 2015, 39(1): 211-216.
[5] 张繁昌, 李传辉. 非平稳地震信号匹配追踪时频分析[J]. 物探与化探, 2011, 35(4): 546-552.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com