Please wait a minute...
E-mail Alert Rss
 
物探与化探  2023, Vol. 47 Issue (2): 410-419    DOI: 10.11720/wtyht.2023.1337
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
半航空瞬变电磁一维聚焦反演研究
王仕兴1(), 何可2,3(), 尹小康1, 魏栋华1, 赵思为1, 郭明3
1.中国中铁二院工程集团有限责任公司,四川 成都 610031
2.西华师范大学 教育信息技术中心,四川 南充 637002
3.成都理工大学 地球物理学院,四川 成都 610059
One-dimensional focusing inversion of the semi-airborne transient electromagnetic method and its application
WANG Shi-Xing1(), HE Ke2,3(), YIN Xiao-Kang1, WEI Dong-Hua1, ZHAO Si-Wei1, GUO Ming3
1. China Railway Eryuan Engineering Group Co., Ltd., Chengdu 610031, China
2. Education Information Technology Center, West China Normal University, Nanchong 637002, China
3. College of Geophysics, Chengdu University of Technology, Chengdu 610059, China
全文: PDF(3837 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

半航空瞬变电磁法(SATEM)是一种采用地面发射—空中接收的新兴地球物理勘探方法,具有灵活、高效的特点。目前应用于SATEM的反演方法往往基于最大平滑准则,使反演结果较平滑,无法较好地识别具体的层界面信息。本文将聚焦反演理论引入到半航空瞬变电磁一维反演中,通过选择合适的聚焦因子和正则化因子来确定聚焦反演稳定器,然后对包含聚焦反演稳定器反演目标函数进行求解,使得反演结果更能清晰识别层状地层突变的界面。设置多个层状地电模型验证聚焦反演的可靠性,同时与Occam反演结果进行对比,突出了聚焦反演识别界面的优势。对某地区地下水探测的实际数据进行聚焦反演计算,与水文地质资料、测井信息进行综合分析,查明了该区域地下含水层的位置及其空间展布情况,同时验证了半航空瞬变电磁对地下水探测的可行性。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王仕兴
何可
尹小康
魏栋华
赵思为
郭明
关键词 半航空瞬变电磁法聚焦反演地下水探测    
Abstract

The semi-airborne transient electromagnetic method (SATEM) is an emerging flexible and efficient geophysical exploration method using ground launch and air reception. The present inversion methods applied to the SATEM produce very smooth inversion results since they apply the maximum smoothing criterion, thus failing to effectively identify the information of specific layer interfaces. This study introduced the focusing inversion theory to the one-dimensional inversion of the SATEM. First, a focusing inversion stabilizer was determined by selecting appropriate focusing and regularization factors. Then, the inversion objective function including the focusing inversion stabilizer was solved to allow the inversion results to effectively identify the abrupt interfaces of layered strata. Furthermore, multiple layered geoelectric models were built to verify the reliability of the focusing inversion. Moreover, the focusing inversion results were compared with the Occam inversion results to highlight the advantages of the focusing inversion in interface identification. This study conducted the focusing inversion calculation of actual data on groundwater detection of a certain area. The calculation results were then combined with the hydrogeological and logging data for comprehensive analysis. Finally, this study determined the locations and spatial distribution of underground aquifers in the area, verifying the feasibility of the SATEM for groundwater detection.

Key wordssemi-airborne transient electromagnetic method    focusing inversion    groundwater detection
收稿日期: 2022-07-13      修回日期: 2022-09-24      出版日期: 2023-04-20
ZTFLH:  P631  
基金资助:中国中铁股份有限公司科技研究开发计划(CZ01-重点-05)
通讯作者: 何可(1988-),男,在读博士,主要从事半航空瞬变电磁法正反演研究工作。Email: hk812760098@163.com
引用本文:   
王仕兴, 何可, 尹小康, 魏栋华, 赵思为, 郭明. 半航空瞬变电磁一维聚焦反演研究[J]. 物探与化探, 2023, 47(2): 410-419.
WANG Shi-Xing, HE Ke, YIN Xiao-Kang, WEI Dong-Hua, ZHAO Si-Wei, GUO Ming. One-dimensional focusing inversion of the semi-airborne transient electromagnetic method and its application. Geophysical and Geochemical Exploration, 2023, 47(2): 410-419.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2023.1337      或      https://www.wutanyuhuatan.com/CN/Y2023/V47/I2/410
Fig.1  半航空瞬变电磁法工作方式示意
Fig.2  不同稳定器随模型参数梯度的变化
Fig.3  聚焦反演流程
地电模型 电阻率/(Ω·m) 层厚/m
H型
K型
ρ1=300、ρ2=50、ρ3=100
ρ1=50、ρ2=200、ρ3=100
h1=100、h2=40、h3=∞
h1=100、h2=40、h3=∞
Table 1  三层地电模型参数
Fig.4  H型地电模型反演结果
Fig.5  K型地电模型反演结果
地电模型 电阻率/(Ω·m) 层厚/m
HK型 ρ1=300、ρ2=100、
ρ3=200、ρ4=50
h1=100、h2=80、
h3=100、h4=∞
KH型 ρ1=50、ρ2=200、
ρ3=100、ρ4=200
h1=100、h2=80、
h3=100、h4=∞
Table 2  四层地电模型参数
Fig.6  HK型地电模型反演结果
Fig.7  KH型地电模型反演结果
Fig.8  深度侧向电阻率测井曲线
Fig.9  实测数据电阻率反演结果
[1] 林君, 薛国强, 李貅. 半航空电磁探测方法技术创新思考[J]. 地球物理学报, 2021, 64(9):2995-3004.
[1] Lin J, Xue G Q, Li X. Technological innovation of semi-airborne electromagnetic detection method[J]. Chinese Journal of Geophysics, 2021, 64(9):2995-3004.
[2] 王绪本, 张赛民, 高嵩, 等. 无人机半航空瞬变电磁探测技术及其应用[C]// 中国地球科学联合学术年会论文集(二十四), 2019.
[2] Wang X B, Zhang S M, Gao S, et al. Semi-airborne transient electromagnetic detection technology and its application[C]// Chinese Joint Annual Conference on Earth Sciences (24), 2019.
[3] 王仕兴, 易国财, 王绪本, 等. 基于分段二分搜索算法的半航空瞬变电磁电导率深度快速成像方法研究[J]. 地球物理学进展, 2021, 36(3):1317-1324.
[3] Wang S X, Yi G C, Wang X B, et al. Research on the Semi-airborne transient electromagnetic conductivity depth rapid imaging method based on segmented binary search algorithm[J]. Progress in Geophysics, 2021, 36(3):1317-1324.
[4] 张振雄, 易国财, 王仕兴, 等. 基于最小构造模型的地空瞬变电磁一维正反演技术研究[J]. 物探化探计算技术, 2021, 43(3):352-359.
[4] Zhang Z X, Yi G C, Wang S X, et al. Research on 1D forward modeling and inversion of ground-airborne transient electromagnetic method based on minimum structural model[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2021, 43(3):352-359.
[5] 许洋. 半航空电磁一维正反演研究[D]. 成都: 成都理工大学, 2014.
[5] Xu Y. Study about 1D forward and inversion of SATEM[D]. Chengdu: Chengdu University of Technology, 2014.
[6] 张澎, 余小东, 许洋, 等. 半航空时间域电磁数据一维自适应正则化反演[J]. 物探化探计算技术, 2017, 39(1):1-8.
[6] Zhang P, Yu X D, Xu Y, et al. An adaptive regularized inversion of 1D semi-airborne time-domain electromagnetic data[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2017, 39(1):1-8.
[7] 赵涵, 景旭, 李貅, 等. 多辐射场源地空瞬变电磁一维反演方法研究[J]. 物探与化探, 2019, 43(1):132-142.
[7] Zhao H, Jing X, Li X, et al. A study of 1D inversion of multi-source ground-airborne transient electromagnetic method[J]. Geophysical and Geochemical Exploration, 2019, 43(1):132-142.
[8] 杨聪, 毛立峰, 毛鑫鑫, 等. 半航空瞬变电磁自适应正则化-阻尼最小二乘算法研究[J]. 地质与勘探, 2020, 56(1):137-146.
[8] Yang C, Mao L F, Mao X X, et al. Study on the semi-aerospace transient electromagnetic adaptive regularization-damped least squares algorithm[J]. Geology and Exploration, 2020, 56(1):137-146.
[9] 马振军, 底青云, 薛国强, 等. 地—空瞬变电磁法电阻率成像研究与应用[J]. 地球物理学报, 2021, 64(3):1090-1105.
[9] Ma Z J, Di Q Y, Xue G Q, et al. The research and application of resistivity imaging of semi-airborne transient electromagnetic method[J]. Chinese J.Geophys., 64(3):1090-1105.
[10] 何可, 郭明, 胡章荣, 等. 半航空瞬变电磁L1范数自适应正则化反演[J]. 物探与化探, 2021, 45(5):1338-1346.
[10] He K, Guo M, Hu Z R, et al. Semi-airborne transient electromagnetic inversion based on L1-norm adaptive regularization[J]. Geophysical and Geochemical Exploration, 2021, 45(5):1338-1346.
[11] He K, Wang X B, Guo M, et al. Spatially constrained inversion of semi-airborne transient electromagnetic data based on a mixed norm[J]. Journal of Applied Geophysics, 2022, 200:104616.
doi: 10.1016/j.jappgeo.2022.104616
[12] Portniaguine O, Zhdanov M S. Focusing geophysical inversion images[J]. Geophysics, 1999, 64(3):874-887.
doi: 10.1190/1.1444596
[13] 刘小平. 大地电磁聚焦反演成像方法研究[D]. 上海: 同济大学, 2007.
[13] Liu X P. Focusing inversion images of magnetotelluric data[D]. Shanghai: Tongji University, 2007.
[14] 白宁波, 周君君, 胡祥云. 优化策略的二维大地电磁光滑聚焦反演研究[J]. 石油地球物理勘探, 2021, 56(4):902-909.
[14] Bai N B, Zhou Z Z, Hu X Y. Two-dimensional magnetotelluric smooth focusing inversion based on optimization strategy[J]. Oil Geophysical Prospecting, 2021, 56(4):902-909.
[15] Zhang L L, Yu P, Wang J L, et al. A study on 2D magnetotelluric sharp boundary inversion[J]. Chinese Journal of Geophysics, 2010, 53(3):631-637.
[16] 秦朋波, 黄大年. 重力和重力梯度数据联合聚焦反演方法[J]. 地球物理学报, 2016, 59(6):2203-2224.
[16] Qin P B, Huang D N. Integrated gravity and gravity gradient data focusing inversion[J]. Chinese Journal of Geophysics, 2016, 59(6):2203-2224.
[17] 陈闫, 李桐林, 范翠松, 等. 重力梯度全张量数据三维共轭梯度聚焦反演[J]. 地球物理学进展, 2014, 29(3):1133-1142.
[17] Chen Y, Li T L, Fan C S, et al. The 3D focusing inversion of full tensor gravity gradient data based on conjugate gradient[J]. Progress in Geophysics, 2014, 29(3):1133-1142.
[18] 米萨克·纳比吉安. 应用地球物理学中的电磁方法[M].赵经祥,王彦军,译. 北京: 地质出版社, 1992: 226-231.
[18] Misac N N. Electromagnetic methods in applied geophysics[M].Translated by ZhaoX, WangY J. Beijing: Geological Publishing House, 1992: 226-231.
[19] 甘露, 唐荣江, 王绪本. 瞬变电磁频—时转换混合优化算法研究[J]. 地球物理学进展, 2018, 33(2): 596-602.
[19] Gan L, Tang R J, Wang X B. Hybrid optimization algorithm of transient electromagnetic time-frequency conversion[J]. Progress in Geophysics, 2018, 33(2):596-602.
[20] Last B J, Kubik K. Compact gravity inversion[J]. Geophysics, 1983, 48(6):713-721.
doi: 10.1190/1.1441501
[21] 陈小斌, 赵国泽, 汤吉, 等. 大地电磁自适应正则化反演算法[J]. 地球物理学报, 2005, 48(4):937-946.
[21] Chen X B, Zhao G Z, Tang J, et al. An adaptive regularized inversion algorithm for magnetotelluric data[J]. Chinese Journal of Geophysics, 2005, 48(4):937-946.
[1] 张莹莹. 带约束的多辐射场源半航空瞬变电磁一维自适应正则化反演方法[J]. 物探与化探, 2022, 46(2): 424-432.
[2] 张莹莹. 多辐射场源半航空瞬变电磁法多分量响应特征分析[J]. 物探与化探, 2021, 45(1): 102-113.
[3] 匡星涛, 吴健生, 杨海, 郑广如, 朱晓颖. 起伏地形条件下的磁异常二维聚焦反演及应用[J]. 物探与化探, 2016, 40(4): 788-797.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com