Please wait a minute...
E-mail Alert Rss
 
物探与化探  2023, Vol. 47 Issue (2): 429-437    DOI: 10.11720/wtyht.2023.1222
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
基于谱反演方法的叠后纵波阻抗反演
邢文军(), 曹思远, 陈思远, 孙耀光
中国石油大学(北京) 地球物理学院,北京 102249
Post-stack P-wave impedance inversion based on spectral inversion
XING Wen-Jun(), CAO Si-Yuan, CHEN Si-Yuan, SUN Yao-Guang
College of Geosciences,China University of Petroleum,Beijing 102249,China
全文: PDF(7004 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

提出一种基于谱反演方法的叠后地震数据纵波阻抗反演算法,用于提高地震反演精度。谱反演在地震高分辨率和反射系数反演中应用广泛,其基于反射系数的奇偶分解,能降低薄层之间的调谐效应,使反演数据体的分辨率得以提高,而由反射系数计算纵波阻抗的过程不适定,分步进行纵波阻抗反演会引入较大的累积误差。本研究提出基于谱反演方法的叠后纵波阻抗反演算法,引入TV正则化约束目标方程,通过迭代求解,可直接得到相对阻抗,然后同预先建立的低频模型进行频率域融合得到绝对阻抗。模型和实际数据说明,相比基于稀疏脉冲反褶积的阻抗反演,本文提出的方法反演分辨率较高,更有利于后续储层预测等研究的开展。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邢文军
曹思远
陈思远
孙耀光
关键词 谱反演阻抗反演奇偶分解TV正则化相对阻抗    
Abstract

Based on spectral inversion,this study proposed a p-wave impedance inversion algorithm for post-stack seismic data to improve inversion accuracy.Spectral inversion is widely used in high-resolution seismic inversion and the reflection coefficient inversion.Based on the odd-even decomposition of reflection coefficients,spectral inversion can reduce the tuning effect between thin layers and enhance the resolution of inverted data volumes.However,the calculation of p-wave impedance using reflection coefficients is ill-posed, and the step-by-step inversion of p-wave impedance tends to introduce a large cumulative error.Therefore,this study proposed a post-stack p-wave impedance inversion method based on spectral inversion.This method introduced the objective equation constrained by TV regularization and calculated the relative p-wave impedance using the iterative method.Then,the absolute p-wave impedance was determined through the frequency-domain fusion of the relative p-wave impedance and the pre-built low-frequency model.As demonstrated by the model and actual data,the method proposed in this study has a higher inversion resolution than the impedance inversion based on sparse-spike deconvolution and is more conducive to subsequent research such as reservoir prediction.

Key wordsspectral inversion    impedance inversion    odd-even decomposition    TV regularization    relative impedance
收稿日期: 2022-05-18      修回日期: 2023-02-13      出版日期: 2023-04-20
ZTFLH:  P631.4  
基金资助:国家重点研发计划项目(2017YFB0202900)
引用本文:   
邢文军, 曹思远, 陈思远, 孙耀光. 基于谱反演方法的叠后纵波阻抗反演[J]. 物探与化探, 2023, 47(2): 429-437.
XING Wen-Jun, CAO Si-Yuan, CHEN Si-Yuan, SUN Yao-Guang. Post-stack P-wave impedance inversion based on spectral inversion. Geophysical and Geochemical Exploration, 2023, 47(2): 429-437.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2023.1222      或      https://www.wutanyuhuatan.com/CN/Y2023/V47/I2/429
Fig.1  合成的时间域信号及其振幅谱
a—时间域信号;b—振幅谱
Fig.2  正则化参数测试
a—正则化参数:5e-5;b—正则化参数:1e-4;c—正则化参数:5e-4;d—正则化参数:1e-3;e—正则化参数:5e-3
Fig.3  上限频率测试
a—上限频率:120 Hz;b—上限频率:135 Hz;c—上限频率:150 Hz;d—上限频率:165 Hz;e—上限频率:180 Hz
Fig.4  预白化因子参数测试
a—预白化因子:0.005;b—预白化因子:0.01;c—预白化因子:0.02;d—预白化因子:0.04;e—预白化因子:0.08
Fig.5  部分Marmousi2模型及合成地震记录
a—部分Marmousi2模型;b—合成地震记录
Fig.6  低频模型及纵波阻抗反演数据
a—低频模型;b—本文方法;c—稀疏脉冲反褶积后的递推反演
Fig.7  实际地震数据及纵波阻抗低频模型
a—实际地震数据;b—纵波阻抗低频模型
Fig.8  地震子波
Fig.9  fx-Decon前纵波阻抗反演结果
a—本文方法;b—稀疏脉冲反褶积后的递推反演
Fig.10  fx-Decon后纵波阻抗反演结果
a—本文方法;b—稀疏脉冲反褶积后的递推反演
[1] 刘喜武, 年静波, 吴海波. 几种地震波阻抗反演方法的比较分析与综合应用[J]. 世界地质, 2005, 24(3):270-275.
[1] Liu X W, Nian J B, Wu H B. Comparison of seismic impedance inversion methods and an application case[J]. Global Geology, 2005, 24(3):270-275.
[2] Geyer C J. Practical Markov chain Monte Carlo[J]. Statistical Science, 1992:473-483.
[3] 张广智, 王丹阳, 印兴耀, 等. 基于MCMC的叠前地震反演方法研究[J]. 地球物理学报, 2011, 54(11):2926-2932.
[3] Zhang G Z, Wang D Y, Yin X Y, et al. Study on prestack seismic inversion using Markov Chain Monte Carlo[J]. Chinese Journal of Geophysics, 2011, 54(11):2926-2932.
[4] Vestergaard P D, Mosegaard K. Inversion of post-stack seismic data using simulated annealing[J]. Geophysical Prospecting, 1991, 39(5):613-624.
doi: 10.1111/gpr.1991.39.issue-5
[5] Haas A, Dubrule O. Geostatistical inversion:a sequential method of stochastic reservoir modeling constrained by seismic data[J]. First Break, 1994, 12(11):561-569.
[6] Le Ravalec M, Noetinger B, Hu L Y. The FFT moving average(FFT-MA) generator:An efficient numerical method for generating and conditioning Gaussian simulations[J]. Mathematical Geology, 2000, 32(6):701-723.
doi: 10.1023/A:1007542406333
[7] 王保丽, 印兴耀, 丁龙翔, 等. 基于FFT-MA谱模拟的快速随机反演方法研究. 地球物理学报, 2015, 58(2):664-673.
[7] Wang B L, Yin X Y, Ding L X, et al. Study of fast stochastic inversion based on FFT-MA spectrum simulation[J]. Chinese Journal of Geophysics, 2015, 58(2):664-673.
[8] 王治强, 曹思远, 陈红灵, 等. 基于TV约束和Toeplitz矩阵分解的波阻抗反演[J]. 石油地球物理勘探, 2017, 52(6):1193-1199.
[8] Wang Z Q, Cao S Y, Chen H L, et al. Wave impedance inversion based on TV regularization and Toeplitz-sparse matrix factorization[J]. Oil Geophysical Prospecting, 2017, 52(6):1193-1199.
[9] Cooke D A, Schneider W A. Generalized linear inversion of reflection seismic data[J]. Geophysics, 1983, 48(6):665-676.
doi: 10.1190/1.1441497
[10] Lancaster S, Whitcombe D. Fast-track “colored” inversion[C]// SEG Technical Program Expanded Abstracts, 2000:1572-1575.
[11] Taylor H L, Banks S C, Mocoy J F. Deconvolution with the L1-norm[J]. Geophysics, 1979, 44(1):39-52.
doi: 10.1190/1.1440921
[12] 夏红敏, 刘兰锋, 张显辉, 等. 地震数据谱反演压缩感知算法实现及应用[J]. 石油地球物理勘探, 2021, 56(2):295-301.
[12] Xia H M, Liu L F, Zhang X H, et al. Implementation and application of compressed sensing algorithm for seismic spectrum inversion[J]. Oil Geophysical Prospecting, 2021, 56(2):295-301.
[13] 宋磊, 印兴耀, 宗兆云, 等. 基于先验约束的深度学习地震波阻抗反演方法[J]. 石油地球物理勘探, 2021, 56(4):716-727.
[13] Song L, Yin X Y, Zong Z Y, et al. Deep learning seismic impedance inversion based on prior constraints[J]. Oil Geophysical Prospecting, 2021, 56(4):716-727.
[14] 王泽峰, 许辉群, 杨梦琼, 等. 时域卷积神经网络地震波阻抗反演因素影响的研究[J]. 地球物理学进展, 2022, 37(5):280-289.
[14] Wang Z F, Xu H Q, Yang M Q, et al. Study on the influence of preprocessing and hyperparameters on Temporal convolutional network seismic impedance inversion[J]. Progress in Geophysics, 2022, 37(5):280-289.
[15] 印兴耀, 刘晓晶, 吴国忱, 等. 模型约束基追踪反演方法[J]. 石油物探, 2016, 55(1):115-122.
doi: 10.3969/j.issn.1000-1441.2016.01.015
[15] Yin X Y, Liu X J, Wu G C, et al. Basis pursuit inversion method under model constraint[J]. Geophysical Prospecting for Petroleum, 2016, 55(1):115-122.
doi: 10.3969/j.issn.1000-1441.2016.01.015
[16] 边国柱, 张立群. 地震数据的谱白化处理[J]. 石油物探, 1986, 25(2):26-33.
[16] Bian G Z, Zhang L Q. Spectral whitening of seismic data[J]. Geophysical Prospecting for Petroleum, 1986, 25(2):26-33.
[17] 孙雷鸣, 曾维辉, 方中于. 地震薄层反射系数谱反演算法研究及应用[J]. 物探化探计算技术, 2014, 36(4):462-470.
[17] Sun L M, Zeng W H, Fang Z Y. Thin-bed reflectivity inversion and seismic application[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2014, 36(4):462-470.
[18] 迟唤昭, 刘财, 单玄龙, 等. 谱反演方法在致密薄层砂体预测中的应用研究[J]. 石油物探, 2015, 54(3):337-344.
doi: 10.3969/j.issn.1000-1441.2015.03.013
[18] Chi H Z, Liu C, Shan X L, et al. Application of spectral inversion for tight thin-bed sand body prediction[J]. Geophysical Prospecting for Petroleum, 2015, 54(3):337-344.
doi: 10.3969/j.issn.1000-1441.2015.03.013
[19] Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4):1289-1306.
doi: 10.1109/TIT.2006.871582
[20] Wang Y H. Inverse Q-filter for seismic resolution enhancement[J]. Geophysics, 2006, 71(3):V51-V60.
doi: 10.1190/1.2192912
[21] Chen S Y, Cao S Y, Sun Y G, et al. Nonstationary spectral inversion of seismic data[C] // SEG Technical Program Expanded Abstracts, 2021:2934-2938.
[22] Wang L Q, Zhou H, Wang Y F, et al. Three-parameter prestack seismic inversion based on L1-2 minimization[J]. Geophysics, 2019, 84(5):R753-R766.
doi: 10.1190/GEO2018-0730.1
[23] Liu J, Zhang J, Huang Z. Accurate estimation of acoustic impedance based on spectral inversion[J]. Geophysical Prospecting, 2018, 66(1):169-181.
doi: 10.1111/1365-2478.12538
[24] Boyd S, Parikh N, Chu E. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and Trends in Machine Learning, 2010, 3(1):1-122.
doi: 10.1561/2200000016
[25] Martin G S, Wiley R, Marfurt K J. Marmousi2:An elastic upgrade for Marmousi[J]. Lead. Edge, 2006, 25(2):156-166.
doi: 10.1190/1.2172306
[1] 朱剑兵, 高照奇, 田亚军, 梁兴城. 带有横向约束的全局优化波阻抗反演方法及应用[J]. 物探与化探, 2022, 46(6): 1477-1484.
[2] 肖张波, 雷永昌, 于骏清, 吴琼玲, 杨超群. 基于宽频资料的扩展弹性阻抗反演方法在陆丰22洼陷低勘探区古近系岩性预测中的应用[J]. 物探与化探, 2022, 46(2): 392-401.
[3] 万晓明, 梁劲, 梁金强, 林霖, 沙志彬, 柴祎, 蔡振华. 叠后波阻抗无井反演技术在T研究区天然气水合物分布预测中的应用[J]. 物探与化探, 2016, 40(3): 438-444.
[4] 时磊, 刘俊州, 董宁, 王箭波, 夏红敏, 王震宇. 扩展弹性阻抗反演技术在致密砂岩薄储层含气性预测中的应用[J]. 物探与化探, 2015, 39(2): 346-351.
[5] 苏世龙, 贺振华, 戴晓云, 王九拴, 张辉, 辛华刚, 刘艳娜. 岩性油气藏地震保幅处理技术及其应用——以东部某油田岩性气藏为例[J]. 物探与化探, 2015, 39(1): 54-59.
[6] 葛成, 郭新军, 赵海波, 李朋, 陈晓雪. 核磁共振T2谱反演影响因素[J]. 物探与化探, 2011, 35(6): 845-847,854.
[7] 杨海长, 李智, 徐建永, 周玉. 叠前反演在LHK地区烃类检测中的应用[J]. 物探与化探, 2011, 35(5): 666-670,688.
[8] 孙炜, 王彦春, 李梅, 杨锐, 郭海华, 李玉凤. 利用叠前地震数据预测火山岩储层裂缝[J]. 物探与化探, 2010, 34(2): 229-232.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com