Please wait a minute...
E-mail Alert Rss
 
物探与化探  2022, Vol. 46 Issue (5): 1258-1266    DOI: 10.11720/wtyht.2022.1696
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
地面回线源瞬变电磁法一维反演系统及其应用
张文波(), 张莹, 李建慧()
中国地质大学(武汉) 地球物理与空间信息学院,湖北 武汉 430074
A 1D inversion system of the ground-based loop-source transient electromagnetic method
ZHANG Wen-Bo(), ZHANG Ying, LI Jian-Hui()
Institute of Geophysics and Geomatics, China University of Geosciences (Wuhan), Wuhan 430074, China
全文: PDF(3031 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

瞬变电磁法现阶段的资料处理解释仍以一维反演为主,因此开发一套功能齐全、高效稳定的一维反演系统对进一步提高国内瞬变电磁法的应用水平仍具有重要意义。本研究开发的地面回线源瞬变电磁法一维反演系统包括了基于高斯牛顿法的最小构造反演和Occam反演,也包括了基于阻尼最小二乘法的横向约束反演和空间约束反演。以内蒙古那仁宝力格煤田玄武岩岩体形态探测为例,将该反演系统的最小构造反演和Occam反演结果与商业软件IX1D进行了对比验证,发现不同反演方法获取的电阻率二维断面图中,玄武岩岩体形态相似、电阻率范围一致;结合钻孔资料,这些一维反演结果清晰反映了玄武岩岩体除岩浆上涌通道区域外的分布形态。将横向约束反演和空间约束反演应用于该实例,结果表明:相邻测点间玄武岩岩体电阻率差异缩小,玄武岩与沉积岩界面的连续性得到增强。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张文波
张莹
李建慧
关键词 瞬变电磁法一维反演最小构造横向约束空间约束    
Abstract

The processing and interpretation of the data derived using the transient electromagnetic (TEM) method are still mainly conducted through one-dimensional (1D) inversion presently. Therefore, developing an efficient and stable 1D inversion system with complete functions is greatly significant for further promoting the applications of the ground-based loop-source TEM method in China. This study developed such an inversion system, which involves four methods, namely minimum-structure inversion, Occam's inversion, laterally constrained inversion (LCI), and spatially constrained inversion (SCI). The first two methods are based on the Gauss-Newton method, and the others are based on the damped least-square method. This 1D inversion system was applied to detect the occurrence forms of the basalt rock masses in the Narenbaolige coalfield in Inner Mongolia. Then, the results derived from the minimum-structure inversion and Occam's inversion used in the 1D inversion system were compared with those obtained using the commercial software IX1D. As shown in the 2D pseudosection maps of resistivity obtained by these inversion methods, the basalt rock masses have similar occurrence forms and consistent resistivity range. Compared with drilling data, these 1D inversion results clearly reflected the distribution patterns of basalt rock masses in the Narenbaolige coalfield except for the upwelling channels of magmas. Afterward, the LCI and SCI were also applied to the coalfield. The results indicate a decrease in the resistivity differences of the basalt rock masses between adjacent survey points and an increase in the continuity of the interfaces between the basalts and sedimentary rocks.

Key wordsTEM    1D inversion    minimum structure    laterally constrained    spatially constrained
收稿日期: 2021-12-24      修回日期: 2022-04-28      出版日期: 2022-10-20
ZTFLH:  P631  
基金资助:国家重点研发计划项目(2020YFE0201300-06);国家自然科学基金项目(42022030)
通讯作者: 李建慧
作者简介: 张文波(1975-), 男, 博士, 讲师, 长期从事电磁法勘探工作。 Email: zhwb_000@126.com
引用本文:   
张文波, 张莹, 李建慧. 地面回线源瞬变电磁法一维反演系统及其应用[J]. 物探与化探, 2022, 46(5): 1258-1266.
ZHANG Wen-Bo, ZHANG Ying, LI Jian-Hui. A 1D inversion system of the ground-based loop-source transient electromagnetic method. Geophysical and Geochemical Exploration, 2022, 46(5): 1258-1266.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2022.1696      或      https://www.wutanyuhuatan.com/CN/Y2022/V46/I5/1258
Fig.1  一维反演框架
Fig.2  一维最小构造反演流程
Fig.3  一维LCI和SCI流程
Fig.4  LCI和SCI参与约束测点示意
Fig.5  那仁宝力格煤田测点分布示意
Fig.6  IX1D软件和本研究最小构造反演结果的RMS对比
Fig.7  160线单点反演电阻率断面
Fig.8  测区最小构造反演电阻率平面(z=0 m)
Fig.9  160线LCI反演电阻率断面
Fig.10  测区LCI反演结果俯视图(z=0 m,α=β=1 000)
Fig.11  160线SCI反演电阻率断面
Fig.12  测区SCI反演结果俯视图(z=0 m,α=β=10)
Fig.13  测区SCI反演结果俯视图(z=0 m,α=β=100)
Fig.14  测区SCI反演结果俯视图(z=0 m,α=β=1 000)
[1] Auken E, Christiansen A V, Kirkegaard C, et al. An overview of a highly versatile forward and stable inverse algorithm for airborne, ground-based and borehole electromagnetic and electric data[J]. Exploration Geophysics, 2015, 46(3): 223-235.
doi: 10.1071/EG13097
[2] 殷长春, 刘云鹤, 熊彬. 地球物理三维电磁反演方法研究动态[J]. 中国科学:地球科学, 2020, 50(3):432-435.
[2] Yin C C, Liu Y H, Xiong B. Status and prospect of 3D inversions in EM geophysics[J]. Science China Earth Sciences, 2020, 50(3): 432-435.
[3] Smith J T, Booker J R. Magnetotelluric inversion for minimum structure[J]. Geophysics, 1988, 53(12): 1565-1576.
doi: 10.1190/1.1442438
[4] 李帝铨, 王光杰, 底青云, 等. 基于遗传算法的CSAMT最小构造反演[J]. 地球物理学报, 2008, 51(4):1234-1245.
[4] Li D Q, Wang G J, Di Q Y, et al. The application of genetic algorithm to CSAMT inversion for minimum structure[J]. Chinese Journal of Geophysics, 2008, 51(4): 1234-1245.
[5] Constable S C, Parker R L, Constable C G. Occam’s inversion: A practical algorithm for generating smooth models from electromagnetic sounding data[J]. Geophysics, 1987, 52(3): 289-300.
doi: 10.1190/1.1442303
[6] Auken E, Christiansen A V. Layered and laterally constrained 2D inversion of resistivity data[J]. Geophysics, 2004, 69(3): 752-761.
doi: 10.1190/1.1759461
[7] Viezzoli V, Christiansen A V, Auken E, et al. Quasi-3D modeling of airborne TEM data by spatially constrained inversion[J]. Geophysics, 2008, 73(3): 105-113.
[8] Farquharson C G, Oldenburg D W. Inversion of time-domain electromagnetic data for a horizontally layered earth[J]. Geophysical Journal International, 1993, 114(3): 433-442.
doi: 10.1111/j.1365-246X.1993.tb06977.x
[9] Farquharson C G, Oldenburg D W, Li Y G. An approximate inversion algorithm for time-domain electromagnetic surveys[J]. Journal of Applied Geophysics, 1999, 42(2): 71-80.
doi: 10.1016/S0926-9851(99)00023-3
[10] Yang D K, Oldenburg D W. Three-dimensional inversion of airborne time-domain electromagnetic data with applications to a porphyry deposit[J]. Geophysics, 2012, 77(2): B23-B34.
doi: 10.1190/geo2011-0194.1
[11] Scholl C, Helwig S L, Tezkan B, et al. 1-D multimodel joint inversion of TEM-data over multidimensional structures[J]. Geophysical Journal International, 2009, 176(1): 81-94.
doi: 10.1111/j.1365-246X.2008.03973.x
[12] Sudha, Tezkan B, Siemon B. Appraisal of a new 1D weighted joint inversion of ground based and helicopter-borne electromagnetic data[J]. Geophysical Prospecting, 2014, 62(3): 597-614.
doi: 10.1111/1365-2478.12091
[13] Haroon A, Adrian J, Bergers R, et al. Joint inversion of long-offset and central-loop transient electromagnetic data: Application to a mud volcano exploration in Perekishkul, Azerbaijan[J]. Geophysical Prospecting, 2015, 63(2): 478-494.
doi: 10.1111/1365-2478.12157
[14] Yogeshwar P, Küpper M, Tezkan B, et al. Innovative boat-towed transient electromagnetics—Investigation of the Furnas volcanic lake hydrothermal system, Azores[J]. Geophysics, 2020, 85(2): E41-E56.
doi: 10.1190/geo2019-0292.1
[15] Auken E, Christiansen A V, Jacobsen L H, et al. A resolution study of buried valleys using laterally constrained inversion of TEM data[J]. Journal of Applied Geophysics, 2008, 65(1): 10-20.
doi: 10.1016/j.jappgeo.2008.03.003
[16] Kirkegaard C, Auken E. A parallel, scalable and memory efficient inversion code for very large-scale airborne electromagnetics surveys[J]. Geophysical Prospecting, 2015, 63(2): 495-507.
doi: 10.1111/1365-2478.12200
[17] 殷长春, 邱长凯, 刘云鹤, 等. 时间域航空电磁数据加权横向约束反演[J]. 吉林大学学报:地球科学版, 2016, 46(1):254-261.
[17] Yin C C, Qiu C K, Liu Y H, et al. Weighted laterally-constrained inversion of time-domain airborne electromagnetic data[J]. Journal of Jilin University:Earth Science Edition, 2016, 46(1): 254-261.
[18] 殷长春, 朱姣, 邱长凯, 等. 航空电磁拟三维模型空间约束反演[J]. 地球物理学报, 2018, 61(6):2537-2547.
[18] Yin C C, Zhu J, Qiu C K, et al. Spatially constrained inversion for airborne EM data using quasi-3D models[J]. Chinese Journal of Geophysics, 2018, 61(6): 2537-2547.
[19] 齐彦福, 殷长春, 王若, 等. 多通道瞬变电磁m序列全时正演模拟与反演[J]. 地球物理学报, 2015, 58(7):2566-2577.
[19] Qi Y F, Yin C C, Wang R, et al. Multi-transient EM full-time forward modeling and inversion of m-sequences[J]. Chinese Journal of Geophysics, 2015, 58(7): 2566-2577.
[20] Li J F, Liu Y H, Yin C C, et al. Fast imaging of time-domain airborne EM data using deep learning technology[J]. Geophysics, 2020, 85(5): E163-E170.
doi: 10.1190/geo2019-0015.1
[21] Li Z H, Huang Q H, Xie X B, et al. A generic 1D forward modeling and inversion algorithm for TEM sounding with an arbitrary horizontal loop[J]. Pure and Applied Geophysics, 2016, 173(8): 2869-2883.
doi: 10.1007/s00024-016-1336-6
[22] Li M X, Cheng J L, Wang P, et al. Transient electromagnetic inversion based on the PSO-DLS combination algorithm[J]. Exploration Geophysics, 2019, 50(5): 472-480.
doi: 10.1080/08123985.2019.1627172
[23] 孙怀凤, 张诺亚, 柳尚斌, 等. 基于L1范数的瞬变电磁非线性反演[J]. 地球物理学报, 2019, 62(12):4860-4873.
[23] Sun H F, Zhang N Y, Liu S B, et al. L1-norm based nonlinear inversion of transient electromagnetic data[J]. Chinese Journal of Geophysics, 2019, 62(12): 4860-4873.
[24] Key K. 1D inversion of multicomponent, multifrequency marine CSEM data: Methodology and synthetic studies for resolving thin resistive layers[J]. Geophysics, 2009, 74(2): 9-20.
[25] Anderson W L. Fourier cosine and sine transforms using lagged convolutions in double-precision (subprograms DLAGF0/DLAGF1)[R]. U.S. Geological Survey, 1983:83-320.
[26] 李建慧, 朱自强, 刘树才, 等. 基于Gaver-Stehfest算法的矩形发射回线激发的瞬变电磁场[J]. 石油地球物理勘探, 2011, 46(3):489-492.
[26] Li J H, Zhu Z Q, Liu S C, et al. Rectangular loop transient electromagnetic field expressed by Gaver-Stehfest algorithm[J]. Oil Geophysical Prospecting, 2011, 46(3): 489-492.
[27] Li J H, Farquharson C G, Hu X Y. Three effective inverse Laplace transform algorithms for computing time-domain electromagnetic responses[J]. Geophysics, 2016, 81(2): E113-E128.
doi: 10.1190/geo2015-0174.1
[28] Aster R C, Borchers B, Thurber C H. Parameter Estimation and Inverse Problems[M]. Amsterdam: Elsevier Academic Press, 2005.
[29] Haber E. Computational methods in geophysical electromagnetics[M]. Philadelphia: SIAM. 2015.
[30] 李建慧. 基于矢量有限单元法的大回线源瞬变电磁法三维数值模拟[D]. 长沙: 中南大学, 2011.
[30] Li J H. 3D numerical simulation for transient electromagnetic field excited by large Source loop based on vector finite element method[D]. Changsha: Central South University, 2011.
[1] 周钟航, 张莹莹. 山峰对电性源地面瞬变电磁响应的影响及校正方法[J]. 物探与化探, 2023, 47(5): 1236-1249.
[2] 邢涛, 王垚, 李建慧. 基于B样条插值的瞬变电磁响应一维精确计算[J]. 物探与化探, 2023, 47(5): 1316-1325.
[3] 何胜, 王万平, 董高峰, 南秀加, 魏丰丰, 白勇勇. 等值反磁通瞬变电磁法在城市地质调查中的应用[J]. 物探与化探, 2023, 47(5): 1379-1386.
[4] 吴国培, 张莹莹, 赵华亮, 周钟航, 李医滨. 基于横向约束的中心回线瞬变电磁一维反演[J]. 物探与化探, 2023, 47(4): 1024-1032.
[5] 丁志军, 罗维斌, 连伟章, 张星, 何海颦. 基于两步变异差分进化算法的激电测深一维反演[J]. 物探与化探, 2023, 47(4): 1033-1039.
[6] 王仕兴, 何可, 尹小康, 魏栋华, 赵思为, 郭明. 半航空瞬变电磁一维聚焦反演研究[J]. 物探与化探, 2023, 47(2): 410-419.
[7] 罗术, 陈争玉, 蓝宇骋, 刘阳飞, 段明杰. 等值反磁通瞬变电磁法探测滑坡堆积体的应用[J]. 物探与化探, 2023, 47(2): 523-529.
[8] 任喜荣, 李欣, 周志杰. 等值反磁通瞬变电磁法在金矿采空区探测中的应用[J]. 物探与化探, 2023, 47(2): 540-546.
[9] 吴北辰, 潘洋润奕, 程久龙, 王辉, 姚娣, 庞肖颖. 瞬变电磁法超小线圈并联式发射回线设计实验[J]. 物探与化探, 2022, 46(4): 934-939.
[10] 张莹莹. 带约束的多辐射场源半航空瞬变电磁一维自适应正则化反演方法[J]. 物探与化探, 2022, 46(2): 424-432.
[11] 邢涛, 袁伟, 李建慧. 回线源瞬变电磁法的一维Occam反演[J]. 物探与化探, 2021, 45(5): 1320-1328.
[12] 张莹莹. 电性源瞬变电磁法综述[J]. 物探与化探, 2021, 45(4): 809-823.
[13] 李瑞友, 张淮清, 吴昭. 基于在线惯序极限学习机的瞬变电磁非线性反演[J]. 物探与化探, 2021, 45(4): 1048-1054.
[14] 裴肖明, 冯国瑞, 戚庭野. 瞬变电磁法探测复杂状态下煤矿充水采空区物理模拟实验[J]. 物探与化探, 2021, 45(4): 1055-1063.
[15] 刘伟, 黄韬, 王庭勇, 刘怡, 张继, 刘文涛, 张琦斌, 李强. 综合物探方法在城市隐伏断裂探测中的应用[J]. 物探与化探, 2021, 45(4): 1077-1087.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com