Please wait a minute...
E-mail Alert Rss
 
物探与化探  2021, Vol. 45 Issue (5): 1288-1294    DOI: 10.11720/wtyht.2021.0020
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
地表水平正反敲击激振下孔法剪切波速测试理论依据讨论
肖妍姗1(), 周正华1(), 苏杰1, 魏鑫2
1.南京工业大学 交通运输工程学院,江苏 南京 210009
2.黑龙江中医药大学附属第一医院,黑龙江 哈尔滨 150040
Discussion about the theoretical basis of the down-hole method for shear wave velocity test under surface forward and reverse horizontal hammer strikes
XIAO Yan-Shan1(), ZHOU Zheng-Hua1(), SU Jie1, WEI Xin2
1. Collage of Transportation Engineering,Nanjing Tech University,Nanjing 210009,China
2. First Affiliated Hospital,Heilongjiang University of Chinese Medicine,Harbin 150040,China
全文: PDF(2431 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

地表水平正反敲击激振下孔法常用于现场剪切波速测试。本文基于动力有限元方法建立了地表水平正反敲击激振下孔法剪切波速测试三维分析模型,采用时域集中质量动力有限元显式逐步积分方法求解了地表水平敲击下线弹性半空间波动响应,分析了不同深度点波形特征及地表水平正反敲击激振下孔法剪切波(S波)波速测试理论依据的合理性。结果表明:地表水平正反敲击下孔法S波波速测试的理论依据,即地表水平正反敲击下压缩波(P波)初动不反向而S波初动反向的理论依据不成立。此外,依据地表水平正反激振下线弹性半空间波动解析解,进一步佐证数值模拟结果的可靠性。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
肖妍姗
周正华
苏杰
魏鑫
关键词 下孔法数值模拟解析解S波P波    
Abstract

The down-hole method under surface horizontal forward and reverse hammer excitation is frequently used for on-site tests of shear wave velocity.Based on the dynamic finite element method,this paper establishes a three-dimensional analysis model of the down-hole method used for shear wave velocity tests under the surface horizontal forward and reverse hammer excitation.Meanwhile,it determines the solutions of the wave response of linear elastic half space under the surface horizontal hammer excitation through explicit stepwise integration of time-domain lumped mass dynamic finite element.Furthermore,it analyzes the waveform characteristics of points at different depths and the rationality of the theoretical basis of shear wave (S-wave) velocity tests under the surface horizontal forward and reverse hammer excitation.As indicated by the results,the theoretical basis of S-wave velocity tests (i.e.,the non-inversion of P-wave onset but inversion of S-wave onset) using the down-hole method under surface horizontal forward and reverse hammer excitation is not tenable.In addition,the numerical simulation results have been further verified reasonable by the analytical solution of the wave motion in the linear elastic half space under the surface horizontal forward and reverse excitation.

Key wordsdown-hole method    numerical simulation    analytical solution    S-wave    P-wave
收稿日期: 2021-01-13      修回日期: 2021-07-22      出版日期: 2021-10-20
ZTFLH:  P631  
基金资助:国家自然科学基金面上项目(U1839202);国家自然科学基金面上项目(U2039208);国家重点研发计划项目(2017YFC1500400)
通讯作者: 周正华
作者简介: 肖妍姗(1995-),女,硕士研究生,研究领域为岩土地震工程。Email: 954231383@qq.com
引用本文:   
肖妍姗, 周正华, 苏杰, 魏鑫. 地表水平正反敲击激振下孔法剪切波速测试理论依据讨论[J]. 物探与化探, 2021, 45(5): 1288-1294.
XIAO Yan-Shan, ZHOU Zheng-Hua, SU Jie, WEI Xin. Discussion about the theoretical basis of the down-hole method for shear wave velocity test under surface forward and reverse horizontal hammer strikes. Geophysical and Geochemical Exploration, 2021, 45(5): 1288-1294.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2021.0020      或      https://www.wutanyuhuatan.com/CN/Y2021/V45/I5/1288
Fig.1  地表水平正反敲击下孔法S波波速测试
a—地表水平敲击下孔法波速测试示意;b—北京某场地正反向地表水平敲击下孔法S波波速测试获得的记录波形;c—地表水平激振下孔法S波波速测试三维分析模型
vs/(m·s-1) vp/(m·s-1) 弹性模量E/Pa 泊松比μ ρ/(kg·m-3)
200 663.3 2.204×108 0.45 1900
Table 1  模型力学参数
Fig.2  地表水平激振下孔法S波波速测试三维分析模型(a)及荷载(b)
Fig.3  水平正反向激振下不同深度测点x向记录波形
a、b、c—部分深度的测点时程曲线;d、e、f—8 m、16 m、24 m测点放大波形示意
Fig.4  近似Heaviside单位阶跃函数沿作用力加载点垂向下各点位移
a—近似Heaviside单位阶跃函数;b—正、反向加载下半空间内沿荷载作用点垂直向下2 m和8 m点的位移反应,泊松比为0.25
[1] 汪闻韶. 土工地震减灾工程中的一个重要参量——剪切波速[J]. 水利学报, 1994, 15(3):80-83.
[1] Wang W S. An important parameter in geotechnical engineering for earthquake disaster mitigation—shear wave velocity[J]. Journal of Hydraulic Engineering, 1994, 15(3):80-83.
[2] 毕兴锁. 场地剪切波速在岩土工程中的应用[J]. 山西建筑, 1992(1):23-29.
[2] Bi X S. Application of site shear wave velocity in geotechnical engineering[J]. Shanxi Architecture, 1992(1):23-29.
[3] 陈昌军. 场地剪切波波速测试及其应用[J]. 华南地震, 2003, 23(4):81-86.
[3] Chen C J. Shear wave velocity testing of building site and its application[J]. South China Journal of Seismology, 2003, 23(4):81-86.
[4] Hunter J A, Pullan S E, Burns R A, et al. Downhole seismic logging for high-resolution reflection surveying in unconsolidated overburden[J]. Geophysics, 1998, 63(4):1371-1384.
doi: 10.1190/1.1444439
[5] Hunter J A, Benjumea B, Harris J B, et al. Surface and downhole shear wave seismic methods for thick soil site investigations[J]. Soil Dynamics and Earthquake Engineering, 2002, 22(9-12):931-941.
doi: 10.1016/S0267-7261(02)00117-3
[6] Schneider J A, Mayne P W, Rix G J. Geotechnical site characterization in the greater Memphis area using cone penetration tests[J]. Engineering Geology, 2001, 62(1-3):169-184.
doi: 10.1016/S0013-7952(01)00060-6
[7] Kayabasi A, Gokceoglu C. Liquefaction potential assessment of a region using different techniques (Tepebasi,Eskiᶊehir,Turkey)[J]. Engineering Geology, 2018, 246:139-161.
doi: 10.1016/j.enggeo.2018.09.029
[8] Stokoe K H, Joh S H, Woods R D. Some contributions of in situ geophysical measurements to solving geotechnical engineering problems[C]// International site characterization ISC'2 Porto,Portugal, 2004:19-42.
[9] Garofalo F, Foti S, Hollender F, et al. InterPACIFIC project:Comparison of invasive and non-invasive methods for seismic site characterization.Part II:Inter-comparison between surface-wave and borehole methods[J]. Soil Dynamics & Earthquake Engineering, 2016, 82:241-254.
[10] 陈云敏, 吴世明, 曾国熙. 表面波谱分析法及其应用[J]. 岩土工程学报, 1992, 14(3):61-65.
[10] Chen Y M, Wu S M, Zeng G X. The spectral analysis of surface waves and its application[J]. Chinese Journal of Geotechnical Engineering, 1992, 14(3):61-65.
[11] ASTM. Standard test methods for downhole seismic testing[M]// Pennsylvania:Annual book of ASTM standard, 2007.
[12] 侯兴民, 杨学山, 廖振鹏, 等. 基于互相关函数的单孔法波速测试优化算法[J]. 岩土力学, 2006, 27(7):1161-1165.
[12] Hou X M, Yang X S, Liao Z P, et al. An optimized approach for single-hole method of shear wave velocity measurement based on correlation functions[J]. Rock and Soil Mechanics, 2006, 27(7):1161-1165.
[13] Baziw E J. Digital filtering techniques for interpreting seismic cone data[J]. Journal of Geotechnical Engineering, 1993, 119(6):998-1018.
doi: 10.1061/(ASCE)0733-9410(1993)119:6(998)
[14] Crice D. Borehole shear-wave surveys for engineering site investigations[M]. Saratoga:Geostuff, 2002:1-14.
[15] Campanella R G, Stewart W P. Seismic cone analysis using digital signal processing for dynamic site characterization[J]. Canadian Geotechnical Journal, 1992, 29(3):477-486.
doi: 10.1139/t92-052
[16] Ishihara K. Soil behaviour in earthquake geotechnics [M]. Oxford: Clarendon Press, 1996.
[17] 廖振鹏. 工程波动理论导论(第二版)[M]. 北京: 科学出版社, 2002.
[17] Liao Z P. Introduction to wave motion theories in engineering (Second Edition) [M]. Beijing: Science Press, 2002.
[18] 廖振鹏, 周正华, 张艳红. 波动数值模拟中透射边界的稳定实现[J]. 地球物理学报, 2002, 45(4):533-545.
[18] Liao Z P, Zhou Z H, Zhang Y H. Stable implementation of transmitting boundary in numerical simulation of wave motion[J]. Chinese Journal of Geophysics, 2002, 45(4):533-545.
[19] 周正华, 廖振鹏. 消除多次透射公式飘移失稳的措施[J]. 力学学报, 2001, 33(4):550-554.
doi: 10.6052/0459-1879-2001-4-1999-342
[19] Zhou Z H, Liao Z P. A mersure for eliminating drift instability of the multi-transmitting formula[J]. Acta Mechanica Sinica, 2001, 33(4):550-554.
[20] 董青, 周正华, 苏杰, 等. 消除多次透射公式高频振荡失稳的一种措施[J]. 震灾防御技术, 2018, 13(3):571-577.
[20] Dong Q, Zhou Z H, Su J, et al. The measure against high frequency oscillating instability of multi-transmitting formula[J]. Technology for Earthquake Disaster Prevention, 2018, 13(3):571-577.
[21] Sanchez-Salinero I, Roesset J M, Stokoe K H Ⅱ. Analytical studies of body wave propagation and attenuation [R]. Austin:Geotechnical Engineering Center the University of Texas at Austin, 1986.
[22] Aki K, Richards P G. Quantitative seismology theory[M]. Mill Valley:University Science Books, 2002.
[23] Chao C C. Dynamical response of an elastic half-space to tangential surface loadings[J]. Journal of Applied Mechanics, 1960, 27(3):559-567.
doi: 10.1115/1.3644041
[1] 杜燚镜, 孙成禹, 王志农, 蔡瑞乾, 王升荣, 焦峻峰. 海水层对地震反射特征的影响研究[J]. 物探与化探, 2023, 47(3): 757-765.
[2] 王欲成, 王洪华, 苏鹏锦, 龚俊波, 席宇何. 地下供水管线渗漏的探地雷达模拟探测试验分析[J]. 物探与化探, 2023, 47(3): 794-803.
[3] 肖世鹏, 熊高君, 袁梦雨, 毛明秋, 王胜艺, 韦增涛. 黏声波高阶傅里叶有限差分法参数优化成像[J]. 物探与化探, 2022, 46(5): 1207-1213.
[4] 柴伦炜. 井间超高密度电法探测基桩的模拟及应用[J]. 物探与化探, 2022, 46(5): 1283-1288.
[5] 苏林帅, 蔡明, 郑占树, 徐宝宝, 罗居森, 胡燕杰, 张荆宇. 井眼扩径对水平井声波测井响应影响的数值模拟[J]. 物探与化探, 2022, 46(2): 467-473.
[6] 张建智, 胡富杭, 刘海啸, 邢国章. 煤矿老窑采空区地—井TEM响应特征[J]. 物探与化探, 2022, 46(1): 191-197.
[7] 苏鹏, 杨进. 时移电阻率反演模拟研究[J]. 物探与化探, 2021, 45(1): 159-164.
[8] 武建平, 张超, 陈剑平, 杨玺, 裴运军, 周庆东. 广域电磁法三维有限单元法模拟研究[J]. 物探与化探, 2020, 44(5): 1066-1072.
[9] 胡文革, 邹宁, 李丹丹, 黄知娟, 雷健, 郭宇航, 潘保芝. 断溶体油藏油源深度对井温分布影响的数值模拟[J]. 物探与化探, 2020, 44(4): 748-755.
[10] 甘团杰, 陈剑平, 杨玺, 周庆东, 曾亮. 海底电缆电磁场分布模拟与分析[J]. 物探与化探, 2020, 44(3): 550-558.
[11] 李卓岱, 张怀强, 卢炜煌, 刘进洋, 颜苗苗. 宽能域γ能谱测井系统结构参数优化设计研究[J]. 物探与化探, 2019, 43(6): 1291-1296.
[12] 刘黎, 章成广, 蔡明, 何洋, 滑玉琎, 刘玉. 裂缝对井眼声波的传播影响规律研究[J]. 物探与化探, 2019, 43(6): 1333-1340.
[13] 王玉和, 崔增斌, 李春朋. 基于物探结果分析采动对急倾斜煤层底板突水影响[J]. 物探与化探, 2019, 43(6): 1399-1403.
[14] 张雪昂, 杨志超, 魏雄. 水层多角度裂缝介质中子测井响应数值模拟[J]. 物探与化探, 2018, 42(6): 1221-1227.
[15] 易洪春. 地—井瞬变电磁响应特征研究[J]. 物探与化探, 2018, 42(5): 970-976.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com