Please wait a minute...
E-mail Alert Rss
 
物探与化探  2018, Vol. 42 Issue (6): 1221-1227    DOI: 10.11720/wtyht.2018.0086
     方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
水层多角度裂缝介质中子测井响应数值模拟
张雪昂1,2, 杨志超3, 魏雄1
1. 东华理工大学 核技术应用教育部工程研究中心,江西 南昌 330013
2. 东华理工大学 核科学与工程学院,江西 南昌 330013
3. 东华理工大学 地球物理与测控技术学院,江西 南昌 330013
Water layer neutron logging in multi-angle crack environment
Xue-Ang ZHANG1,2, Zhi-Chao YANG3, Xiong WEI1
1. Engineering Research Center of Nuclear Technology Application, Ministry of Education,East China University of Technology,Nanchang 330013,China
2. School of Nuclear Science and Engineering,East China University of Technology,Nanchang 330013,China
3. School of Geophysics and Measurement-control Technology,East China University of Technology,Nanchang 330013,China
全文: PDF(2372 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

地球物理勘探作业中,裂缝地层是一种重要的潜在储层介质,因为其结构的复杂性和成因的特征性,裂缝介质的探测难度一直较大。为了对裂缝介质进行识别及研究,通过地球物理中子测井方法对其进行勘探研究是十分必要的。笔者应用分散多角度裂缝理论,模拟孔—裂缝介质中的含水地层,通过变化裂缝参数研究对应的中子测井数据。研究结果发现,中—低角度的裂缝介质中,热中子密度极大值比近似水平角度裂缝介质中的密度极大值大,并且其对裂缝环境参数的敏感度也明显大于其他角度裂缝介质中的热中子密度敏感度;在高角度裂缝介质中,热中子密度图分布平滑,说明高角度裂缝介质对热中子吸收作用较小;在热中子密度分布平面图中,因水中含氢量较大,热中子扩散范围小。通过分析水层中的热中子密度分布情况、密度分布极大值以及时间谱最大值,发现水层中的中子对中等角度和低角度的裂缝介质更加灵敏,且容易被慢化和吸收。这些研究结果可以为野外裂缝性介质的地球物理勘测工作提供理论指导建议。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张雪昂
杨志超
魏雄
关键词 裂缝中子测井多角度裂缝理论数值模拟水层    
Abstract

In geophysical exploration,crack medium is an important potential reservoir medium,and because of its complex structure and characteristics,the detection difficulty of crack medium is always great.For the purpose of identifying and studying the crack medium,it is necessary to conduct exploration and research through geophysical neutron logging method.In this paper,the authors applied the theory of dispersed multi-angle cracks to simulating the water layer strata in the pore-crack medium.The corresponding neutron log data were studied by changing crack parameters.The results of the study show that,in the low and medium angle crack environment,the maximum thermal neutron density is larger than that of approximate horizontal angle crack medium,and its sensitivity is significantly greater than that of other kinds crack environment,and that,in the high angle crack medium,the thermal neutron density map is smooth,indicating that the high angle crack medium has little effect on thermal neutron absorption.In the thermal neutron density distribution plan,the thermal neutron diffusion range is small because of the high hydrogen content in water.By analyzing the water layer thermal neutron density distribution,the maximum density distribution and the maximum time spectrum,the authors found that the neutron in the water layer is more sensitive to low and medium angle crack media,and is easy to be slowed down and absorbed.These results can provide theoretical guidance for geophysical survey work in the field.

Key wordscrack    neutron logging    multi-angle crack theory    numerical simulation    water layer
收稿日期: 2018-03-08      出版日期: 2018-12-19
:  P631  
基金资助:国家自然科学基金项目(11665002);江西省教育厅科技项目(GJJ160569);江西省青年科学基金项目(20181BAB213018)
作者简介: 张雪昂(1986-),女,讲师,博士,主要从事储层测井勘探研究工作。Email:lkadaj@163.com
引用本文:   
张雪昂, 杨志超, 魏雄. 水层多角度裂缝介质中子测井响应数值模拟[J]. 物探与化探, 2018, 42(6): 1221-1227.
Xue-Ang ZHANG, Zhi-Chao YANG, Xiong WEI. Water layer neutron logging in multi-angle crack environment. Geophysical and Geochemical Exploration, 2018, 42(6): 1221-1227.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2018.0086      或      https://www.wutanyuhuatan.com/CN/Y2018/V42/I6/1221
  低角度裂缝水层中的热中子密度分布
  40°裂缝水层中的热中子密度分布
  50°裂缝水层中的热中子密度分布
  70°裂缝水层中的热中子密度分布
  90°裂缝介质中水层中的热中子密度分布
  水层中不同角度裂缝介质中的热中子密度极大值
  水层中不同角度裂缝介质中的时间谱最大值
  水层中裂缝介质野外采集数据计算结果
a—热中子密度分布;b—热中子密度分布平面
  水层中裂缝介质数值模拟结果
a—热中子密度分布;b—热中子密度分布平面
[1] Hudson J A . Overall properties of a cracked solid[J]. Mathematical Proceedings of the Cambridge Philosophical Society, 1980,88(2):371-384.
doi: 10.1017/S0305004100057674
[2] Hudson J A . Wave speeds and attenuation of elastic waves in material containing cracks[J]. Geophysical Journal International, 1981,64(1):133-150.
doi: 10.1111/j.1365-246X.1981.tb02662.x
[3] Hudson J A . Attenuation due to second-order scattering in material containing cracks[J]. Geophysical Journal International, 1990,102(2):485-490.
doi: 10.1111/j.1365-246X.1990.tb04480.x
[4] Hudson J A . Overall properties of heterogeneous material[J]. Geophysical Journal International, 1991,107(3):505-511.
doi: 10.1111/j.1365-246X.1991.tb01411.x
[5] Hudson J A, Liu E, Crampin S . The Mechanical properties of materials with interconnected cracks and pores[J]. Geophysical Journal International, 1996,124(1):105-112.
doi: 10.1111/j.1365-246X.1996.tb06355.x
[6] Hudson J A, Pointer T, Liu E . Effective-medium theories for fluid-saturated materials with aligned cracks[J]. Geophysical Prospecting, 2001,49(5):509-522.
doi: 10.1046/j.1365-2478.2001.00272.x
[7] Zhao Y, Yao G Q, Mu L H , et al. Characteristics and controlling factors of fractures in lacustrine dolostones reservoirs in Tanggu district[J]. Earth Science, 2016,41(2):252-264.
[8] Germán R J, Quintal B M, Tobias M , et al. Energy dissipation of P and S-waves in fluid-saturated rocks:An overview focusing on hydraulically connected fractures[J]. Journal of Earth Science, 2015,26(6):785-790.
doi: 10.1007/s12583-015-0613-0
[9] 张福宏, 黄平, 黄开伟 , 等. 复杂裂缝地球物理模型制作及地震采集处理研究[J]. 物探与化探, 2018,42(1):87-95.
[10] 姜黎明, 余春昊, 齐宝权 , 等. 孔洞型碳酸盐岩储层饱和度建模新方法及应用[J]. 天然气地球科学, 2017,28(8):1250-1256.
doi: 10.11764/j.issn.1672-1926.2016.11.009
[11] Hall S A, Kendall J M, Maddock J , et al. Crack density tensor inversion for analysis of changes in rock frame architecture[J]. Geophysical Journal International, 2008,173(2):577-592.
doi: 10.1111/j.1365-246X.2008.03748.x
[12] 俞岱, 孙渊, 路婧 , 等. 浅层初至波旅行时层析并行算法及在地裂缝调查中的应用[J]. 物探与化探, 2017,41(5):977-985.
doi: 10.11720/wtyht.2017.5.28
[13] Nandal J S, Saini T N . Reflection and refraction at an imperfectly bonded interface between poroelastic solid and cracked elastic solid[J]. Journal of Seismology, 2012,17(2):239-253.
doi: 10.1007/s10950-012-9311-x
[14] 全红娟, 朱光明, 潘渊 , 等. 勘探地震物理震源模拟分析[J]. 物探与化探, 2017,41(2):341-346.
doi: 10.11720/wtyht.2017.2.23
[15] 薛娇, 顾汉明, 崔成国 , 等. 基于等效介质模型的裂缝参数AVOA反演[J]. 石油地球物理勘探, 2016,51(6):1171-1179.
[16] Jennings R L, Weber G A . Towards fast quantitative modelling of pulsed neutron logging tools [C]//SPWLA 36 th Annual Logging Symposium , 1995.
[17] Fricke S, David P, Adolph B , et al. Thermal neutron porosity using pulsed neutron measurement [C]//SPWLA 49 th Annual Logging Symposium , 2008.
[18] 张锋, 王新光 . 脉冲中子—中子测井影响因素的数值模拟[J]. 中国石油大学学报:自然科学版, 2009,6:46-51.
doi: 10.3321/j.issn:1673-5005.2009.06.010
[19] 张锋, 孙燕 . 蒙特卡罗方法在脉冲中子测井中的应用[J].同位素, 2005(s1):21-25.
doi: 10.3969/j.issn.1000-7512.2005.01.005
[20] Meléndez-Martínez J, Schmitt D R . A comparative study of the anisotropic dynamic and static elastic moduli of unconventional reservoir shales:implication for geomechanical investigations[J]. Geophysics, 2016,81(3):D253-D269.
doi: 10.1190/geo2015-0427.1
[21] Ruan Z, Yu B S, Chen Y Y . Application of fluid inclusion analysis for buried dissolution predicting in the Tahe oilfield of Tarim basin,NW China[J]. Journal of Earth Science, 2014,24(3):343-354.
doi: 10.1007/s12583-013-0338-x
[22] 刘建伟, 张云银, 曾联波 , 等. 非常规油藏地应力和应力甜点地球物理预测——渤南地区沙三下亚段页岩油藏勘探实例[J]. 石油地球物理勘探, 2016,51(4):792-800.
doi: 10.13810/j.cnki.issn.1000-7210.2016.04.022
[23] Zhang Z G, Du Y S, Gao L F , et al. The late mesozoic granodiorites from the Southwest Basin in the South China Sea and its tectonic implication[J]. Journal of Earth Science, 2012,23(3):268-276.
doi: 10.1007/s12583-012-0252-7
[24] Antonio J, Tadeu A, Amado Mendes P A .Simulation of wave propagation in a fluid-filled borehole embedded in a cracked medium using a coupled BEM/TBEM formulation[J]. Bulletin of the Seismological Society of America, 2009,99(6):3326-3339.
doi: 10.1785/0120090047
[25] Zhang X A, Wang Z W . Distinguishing oil and water layers by interpreting acoustic logging data with changing well diameters[J]. Geophysical Prospecting, 2015,63(3):669-679.
doi: 10.1111/1365-2478.12220
[1] 丁骁, 莫思特, 李碧雄, 黄华. 混凝土内部裂缝对电磁波传输特性参数的影响[J]. 物探与化探, 2022, 46(1): 160-168.
[2] 张建智, 胡富杭, 刘海啸, 邢国章. 煤矿老窑采空区地—井TEM响应特征[J]. 物探与化探, 2022, 46(1): 191-197.
[3] 肖妍姗, 周正华, 苏杰, 魏鑫. 地表水平正反敲击激振下孔法剪切波速测试理论依据讨论[J]. 物探与化探, 2021, 45(5): 1288-1294.
[4] 谢清惠, 蒋立伟, 赵春段, 王仲达, 唐协华, 罗瑀峰. 提高蚂蚁追踪裂缝预测精度的应用研究[J]. 物探与化探, 2021, 45(5): 1295-1302.
[5] 黄苇, 周捷, 高利君, 王胜利, 严海滔. 基于同步挤压改进短时傅立叶变换的分频蚂蚁追踪在断裂识别中的应用[J]. 物探与化探, 2021, 45(2): 432-439.
[6] 苏鹏, 杨进. 时移电阻率反演模拟研究[J]. 物探与化探, 2021, 45(1): 159-164.
[7] 李尧, 张笑桀, 刘恭利, 龚敏. 渤海油田渤中A构造太古宙潜山裂缝储层预测[J]. 物探与化探, 2021, 45(1): 37-45.
[8] 武建平, 张超, 陈剑平, 杨玺, 裴运军, 周庆东. 广域电磁法三维有限单元法模拟研究[J]. 物探与化探, 2020, 44(5): 1066-1072.
[9] 陈志刚, 马文杰, 赵宏忠, 许凤, 崔全章, 马辉, 孙星. 利用曲率类属性预测储层裂缝的流程及应用实例[J]. 物探与化探, 2020, 44(5): 1201-1207.
[10] 胡文革, 邹宁, 李丹丹, 黄知娟, 雷健, 郭宇航, 潘保芝. 断溶体油藏油源深度对井温分布影响的数值模拟[J]. 物探与化探, 2020, 44(4): 748-755.
[11] 甘团杰, 陈剑平, 杨玺, 周庆东, 曾亮. 海底电缆电磁场分布模拟与分析[J]. 物探与化探, 2020, 44(3): 550-558.
[12] 屈雪峰, 赵中平, 雷启鸿, 刘建, 高武斌. 鄂尔多斯盆地合水地区延长组裂缝发育特征及控制因素[J]. 物探与化探, 2020, 44(2): 262-270.
[13] 马修刚, 周军, 蔡文渊, 王伟, 于伟高, 曹先军, 孙佩. 反射波成像与纵波径向速度成像在华北油田裂缝型碳酸盐岩储层勘探开发中的联合应用[J]. 物探与化探, 2020, 44(2): 271-277.
[14] 李卓岱, 张怀强, 卢炜煌, 刘进洋, 颜苗苗. 宽能域γ能谱测井系统结构参数优化设计研究[J]. 物探与化探, 2019, 43(6): 1291-1296.
[15] 刘黎, 章成广, 蔡明, 何洋, 滑玉琎, 刘玉. 裂缝对井眼声波的传播影响规律研究[J]. 物探与化探, 2019, 43(6): 1333-1340.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com