Please wait a minute...
E-mail Alert Rss
 
物探与化探  2023, Vol. 47 Issue (3): 757-765    DOI: 10.11720/wtyht.2023.1366
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
海水层对地震反射特征的影响研究
杜燚镜(), 孙成禹(), 王志农, 蔡瑞乾, 王升荣, 焦峻峰
中国石油大学(华东) 地球科学与技术学院,山东 青岛 266580
Effects of seawater layer on seismic reflection characteristics
DU Yi-Jing(), SUN Cheng-Yu(), WANG Zhi-Nong, CAI Rui-Qian, WANG Sheng-Rong, JIAO Jun-Feng
School of Geosciences,China University of Petroleum(East China),Qingdao 266580,China
全文: PDF(4212 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

在海洋地震勘探中,地震反射特征对于AVO分析、海底参数反演以及构造分析等具有重要作用。地震波在海洋中传播,其产生的地震反射特征受到海水层和海底以下沉积物的综合影响,但目前业界主要针对海底以下沉积物对地震反射特征的影响开展研究,关于海水层对地震反射特征影响的研究较少。本文主要研究地震波在海水层中传播时地震波场的变化特征,首先从流体—固体分界面和自由界面的边界条件出发,推导出弹性界面入射和反射时的P-P振幅比,得到海水层效应的数学表达式。然后分析入射波频率、海水层深度、海底阻抗差和入射角等因素对海水层滤波效应的影响,分析结果表明:海水层对于地震P波具有周期性的选频滤波效应;选频滤波效应的周期与入射波频率和海水层深度成反比,与入射角成正比;入射角越大,地震P波衰减越严重;阻抗差对振幅的影响与入射波频率和海水层深度有关。最后利用数值模拟验证了海水层对地震反射特征的影响。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杜燚镜
孙成禹
王志农
蔡瑞乾
王升荣
焦峻峰
关键词 海水层地震反射特征P-P波反射系数选频滤波    
Abstract

In marine seismic exploration,seismic reflection characteristics play an important role in AVO analysis,inversion for seabed parameters,and structural analysis.When seismic waves propagate in the ocean,their seismic reflection characteristics are affected by the seawater layer and the sediments beneath the seabed.However,previous studies mainly focus on the influence of the sediments beneath the seabed,while there is a lack of studies on the effects of the seawater layer on the seismic reflection characteristics.This study analyzed the changes in the seismic wave field during the seismic wave propagation in the seawater layer.Based on the boundary conditions of fluid-solid and free interfaces,this study derived the P-P amplitude ratio between the incident and reflected waves on an elastic interface and obtained the mathematical expression of the seawater layer effect accordingly.Then,this study analyzed the influencing factors,such as the frequency of incident waves,the depth of the seawater layer,the impedance contrast of the seabed,and the incident angle,on the filtering effect of the seawater layer.The analysis results are as follows:The seawater layer had a periodic frequency selective filtering effect on seismic P-waves;The period of the frequency selective filtering effect was inversely proportional to the frequency of incident waves and the depth of the seawater layer and was directly proportional to the incident angle;A higher incident angle corresponded to severer attenuation of seismic P-waves;The effects of impedance contrast on amplitude was related to the frequency of incident waves and the depth of the seawater layer.Finally,the study verified the effects of the seawater layer on seismic reflection characteristics through numerical simulations.

Key wordsseawater layer    seismic reflection characteristics    P-P wave reflection coefficient    frequency selective filtering
收稿日期: 2022-08-02      修回日期: 2023-02-13      出版日期: 2023-06-20
ZTFLH:  P631.4  
基金资助:国家自然科学基金项目“基于石油勘探面波与P—导波的近地表纵横波速度一体化反演”(42174140);“深度偏移地震数据特征剖析与深度域直接反演方法研究”(41874153)
通讯作者: 孙成禹(1968-),男,教授,博士生导师,主要从事地震勘探方面的教学和科研工作。Email:suncy@upc.edu.cn
作者简介: 杜燚镜(1998-),女,硕士在读,主要研究方向为地震波传播理论研究、面波正演及参数反演。Email:732744916@qq.com
引用本文:   
杜燚镜, 孙成禹, 王志农, 蔡瑞乾, 王升荣, 焦峻峰. 海水层对地震反射特征的影响研究[J]. 物探与化探, 2023, 47(3): 757-765.
DU Yi-Jing, SUN Cheng-Yu, WANG Zhi-Nong, CAI Rui-Qian, WANG Sheng-Rong, JIAO Jun-Feng. Effects of seawater layer on seismic reflection characteristics. Geophysical and Geochemical Exploration, 2023, 47(3): 757-765.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2023.1366      或      https://www.wutanyuhuatan.com/CN/Y2023/V47/I3/757
Fig.1  下传波场的海洋模型
Fig.2  上传波场的海洋模型
深度/m 纵波速度/
(m·s-1)
横波速度/
(m·s-1)
密度/
(g·cm-3)
海水层 h 1 500 0 1
海底 1 800 800 ρ
Table 1  模型参数
Fig.3  振幅频率响应随入射波频率变化曲线
Fig.4  振幅频率响应随海水层深度变化曲线
Fig.5  振幅频率响应随海底阻抗差变化曲线
Fig.6  不同入射波频率振幅频率响应随入射角变化曲线
Fig.7  不同海水层深度振幅频率响应随入射角变化曲线
Fig.8  不同海底阻抗差振幅频率响应随入射角变化曲线
Fig.9  弱阻抗差海底情况下的地震记录频谱
Fig.10  强阻抗差海底情况下的地震记录频谱
[1] 孟祥羽. 复杂海洋声学环境下的反射地震响应及相关处理方法研究[D]. 长春: 吉林大学, 2021.
[1] Meng X Y. Research on reflection seismic data's response and related processing methods in complicated ocean acoustic environment[D]. Changchun: Jilin University, 2021.
[2] 戚宾, 王祥春, 赵庆献. 海洋电火花震源地震勘探研究进展[J]. 物探与化探, 2020, 44(1):107-111.
[2] Qi B, Wang X C, Zhao Q X. Research on the progress of marine sparker seismic exploration[J]. Geophysical and Geochemical Exploration, 2020, 44(1):107-111.
[3] Amundsen L, Reitan A. Decomposition of multicomponent sea-floor data into upgoing and downgoing P- and S-waves[J]. Geophysics, 1995, 60(2):563-572.
doi: 10.1190/1.1443794
[4] Amundsen L, Reitan A. Estimation of sea-floor wave velocities and density from pressure and particle velocity by AVO analysis[J]. Geophysics, 1995, 60(5):1575-1578.
doi: 10.1190/1.1443890
[5] Badiey M, Jaya I, Cheng H D. Propagator matrix for plane wave reflection from inhomogeneous anisotropic poroelastic seafloor[J]. Journal of Computational Acoustics, 1994, 2(1):11-27.
doi: 10.1142/S0218396X94000038
[6] Badiey, Mohsen. Deterministic and stochastic analyses of acoustic plane-wave reflection from inhomogeneous porous seafloor[J]. The Journal of the Acoustical Society of America, 1996, 99(2):903-913.
doi: 10.1121/1.414664
[7] Denneman A, Drijkoningen G G, Smeulders D, et al. Reflection and transmission of waves at a fluid/porous-medium interface[J]. Geophysics, 2002, 67(1):282-291.
doi: 10.1190/1.1451800
[8] 阮爱国, 李家彪, 初凤友, 等. 海底天然气水合物层界面反射AVO 数值模拟[J]. 地球物理学报, 2006, 49(6):1826-1835.
[8] Ruan A G, Li J B, Chu F Y, et al. AVO numerical simulation of gas hydrate reflectors beneath seafloor[J]. Chinese Journal of Geophysics, 2006, 49(6):1826-1835.
[9] Chen W Y, Wang Z H, Zhao K, et al. Reflection of acoustic wave from the elastic seabed with an overlying gassy poroelastic layer[J]. Geophysical Journal International, 2015, 203:213-227.
doi: 10.1093/gji/ggv266
[10] 郑广学, 祝捍皓, 朱军. 由贝叶斯理论和传播损失反演海底参数[C]// 2018年全国声学大会论文集, 2018:70-71.
[10] Zheng G X, Zhu H H, Zhu J. Geo-acoustic parameter inversion by Bayesian theory and transmission loss[C]// Proceedings of the 2018 National Acoustics Conference, 2018:70-71.
[11] 张海刚. 具有弹性海底的海洋环境中声场计算研究[D]. 哈尔滨: 哈尔滨工程大学, 2006.
[11] Zhang H G. Research on sound field computation in the ocean environment with elastic bottom[D]. Harbin:Harbin Engineering University, 2006.
[12] Liu Y T, Liu X W, Umberta, et al. An inversion method for seafloor elastic parameters[J]. Geophysics, 2015, 80(3):N11-N21.
doi: 10.1190/geo2014-0028.1
[13] Liu Y T, Liu X W. Seafloor elastic parameters estimation based on AVO inversion[J]. Marine Geophysical Research, 2015, 36(4):335-342.
doi: 10.1007/s11001-015-9260-1
[14] Zhang G, Hao C, Chen Y. Analytical study of the reflection and transmission coefficient of the submarine interface[J]. Acta Geophysica, 2018, 66(4):449-460.
doi: 10.1007/s11600-018-0153-y
[15] 刘洋廷. AVO理论在海底弹性参数反演中的应用研究[D]. 北京: 中国地质大学(北京), 2017.
[15] Liu Y T. A study on the application of AVO theory in seafloor elastic parameters estimation[D]. Beijing: China University of Geosciences(Beijiing), 2017.
[16] 王维佳. 弹性波在海底多分量记录上的特征[J]. 石油地球物理勘探, 2000, 35(2):139-146.
[16] Wang W J. Essential characteristic of elastic waves in ocean bottom multicomponent seismograms[J]. Oil Geophysical Prospecting, 2000, 35(2):139-146.
[17] 顾汉明, 王家映, 朱光明. 频率—波数域递推计算海底多分量地震记录中的反射系数[J]. 地球物理学报, 2002, 45(2):255-262.
[17] Gu H M, Wang J Y, Zhu G M. Calculation of reflection coefficient in frequency-wave-number-domain using seafloor seismic multi-component data[J]. Chinese Journal of Geophysics, 2002, 45(2):255-262.
[18] 罗夏云, 程广利, 孟路稳, 等. 两种声场模型下环境参数对Scholte波传播特性的影响[J]. 海军工程大学学报, 2019, 31(3):48-54.
[18] Luo X Y, Cheng G L, Meng L W, et al. Influence of environmental parameters on Scholte wave propagation characteristics under two kinds of acoustic field model[J]. Journal of Navel University of Engineering, 2019, 31(3):48-54.
[19] Chanda A, Bora S N. Different approaches in scattering of water waves by two submerged porous plates over an elastic sea-floor[J]. Geophysical & Astrophysical Fluid Dynamics, 2022:1-28.
[20] 马德志, 王炜, 金明霞, 等. 海上地震勘探斜缆采集中鬼波产生机理及压制效果分析[J]. 物探与化探, 2022, 46(1):175-181.
[20] Ma D Z, Wang W, Jin M X, et al. Generation mechanism of ghost wave in marine seismic exploration and ghost wave attenuation from marine seismic data[J]. Geophysical and Geochemical Exploration, 2022, 46(1):175-181.
[21] 张兴岩, 朱江梅, 杨薇, 等. 海洋资料多次波组合衰减技术及应用[J]. 物探与化探, 2011, 35(4):511-515.
[21] Zhang X Y, Zhu J M, Yang W, et al. Group technology of antimultiple in marine seismic data processing and its application[J]. Geophysical and Geochemical Exploration, 2011, 35(4):511-515.
[22] 吴宝年. 油藏模型含油饱和度变化的地震振幅响应特征[J]. 物探与化探, 2015, 39(6):1271-1277.
[22] Wu B N. Seismic amplitude response characteristics of oil-bearing saturability variation of the oil pool model[J]. Geophysical and Geochemical Exploration, 2015, 39(6):1271-1277.
[23] 孙成禹, 李振春. 地震波动力学基础[M]. 北京: 石油工业出版社, 2011.
[23] Sun C Y, Li Z C. Fundamentals of seismic wave dynamics[M]. Beijing: Petroleum Industry Press, 2011.
[24] 顾汉明, 江涛, 朱培民, 等. 海底多波多分量AVO反演岩性参数的敏感性分析[J]. 石油物探, 1999, 38(4):36-43.
[24] Gu H M, Jiang T, Zhu P M, et al. Sensitivity analysis of petrophysical parameter inversion using seabottom multiwave,multicomponent AVO data[J]. Geophysical Prospecting for Petroleum, 1999, 38(4):36-43.
[1] 李军峰, 李文杰, 孟庆敏, 肖都. 高分辨率单道海上地震在香港 海域沉积结构勘查中的应用[J]. 物探与化探, 2007, 31(1): 90-94.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com