Please wait a minute...
E-mail Alert Rss
 
物探与化探  2019, Vol. 43 Issue (6): 1333-1340    DOI: 10.11720/wtyht.2019.0265
  方法研究·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
裂缝对井眼声波的传播影响规律研究
刘黎1, 章成广1(), 蔡明1, 何洋1, 滑玉琎2, 刘玉3
1. 长江大学 油气资源与勘探技术教育部重点实验室,湖北 武汉 430100
2. 太原理工大学 矿业工程学院,山西 太原 030024
3. 东华理工大学 地球物理与测控学院,江西 南昌 330013
Studies on the effec of crack on the propagation of acoustic waves in wellbore
Li LIU1, Cheng-Guang ZHANG1(), Ming CAI1, Yang HE1, Yu-Jin HUA2, Yu LIU3
1. Key Laboratory of Exploration Technologies for Oil and Gas Resources, Ministry of Education,Yangtze University,Wuhan 430100,China
2. College of Mining Engineering,Taiyuan University of Technology,Taiyuan 030024,China
3. School of Geophysics Measurement-control Technology,East China University of Technology,Nanchang 330013,China
全文: PDF(3680 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

在致密油气储层中,裂缝是油气运移的重要渗流通道和储集空间,裂缝的发育情况直接控制着储集层的储集性能。为了利用横波和斯通利波衰减信息评价裂缝发育情况,采用三维变网格时域有限差分数值模拟研究了井眼环境下裂缝宽度、裂缝倾角对横波和斯通利波衰减的影响规律。研究结果表明:随着裂缝宽度增大,透射横波、透射斯通利波发生能量衰减;当裂缝倾斜时,透射斯通利波对裂缝倾角不敏感,随着倾角变大衰减变化不大。而透射横波对裂缝倾角较为敏感,当裂缝倾角为0°时,透射横波衰减幅度最大;随着裂缝倾角变大,透射横波衰减幅度明显变小;裂缝倾角大于25°时,随着角度进一步的增加,透射横波衰减幅度缓慢变小。此外,将数值模拟的横波衰减曲线与物理实验中的横波衰减曲线进行对比,两者吻合性良好。本研究对于完善裂缝性储层的声波测井评价方法具有一定的理论指导作用。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘黎
章成广
蔡明
何洋
滑玉琎
刘玉
关键词 微裂缝斯通利波横波裂缝倾角数值模拟    
Abstract

In tight oil and gas reservoirs,cracks are important seepage channels and reservoir spaces for hydrocarbon migration.The development of the crack directly controls the reservoir performance.In order to evaluate the crack development by using the shear and Stoneley wave attenuation information,the authors used the three-dimensional variable grid time domain finite difference method to study the influence of crack widths and angles on shear and Stoneley wave attenuation in the wellbore environment.The results show that,as the crack width increases,the transmitted Shear wave and the Stoneley wave undergo energy decay.When the crack is tilted,the transmission Stoneley wave is insensitive to the crack dip.As the dip angle becomes larger,the attenuation does not change much.However,the transmitted shear wave is more sensitive to the crack dip.When the crack dip angle is 0°,the transmitted shear wave attenuation amplitude is the largest.As the dip angle of the crack becomes larger,the attenuation of the transmitted shear wave becomes significantly smaller.When the crack dip angle is greater than 25°,the attenuation amplitude of the transmitted shear wave becomes smaller and smaller as the angle increases.In addition,the numerical simulation of the shear wave attenuation curve is compared with the shear wave attenuation curve in the physical experiment, and the two are in good agreement.This study has a certain theoretical guidance for improving the acoustic logging evaluation method of fractured reservoirs.

Key wordsmicron-scale cracks    Stoneley wave    shear wave    crack dip    numerical simulation
收稿日期: 2019-05-13      出版日期: 2019-11-28
:  P631.4  
基金资助:国家自然科学基金项目(41774116)
通讯作者: 章成广
作者简介: 刘黎(1986-),女,博士研究生,主要从事地球物理勘探方法研究工作。Email:monicaliuli@163.com
引用本文:   
刘黎, 章成广, 蔡明, 何洋, 滑玉琎, 刘玉. 裂缝对井眼声波的传播影响规律研究[J]. 物探与化探, 2019, 43(6): 1333-1340.
Li LIU, Cheng-Guang ZHANG, Ming CAI, Yang HE, Yu-Jin HUA, Yu LIU. Studies on the effec of crack on the propagation of acoustic waves in wellbore. Geophysical and Geochemical Exploration, 2019, 43(6): 1333-1340.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2019.0265      或      https://www.wutanyuhuatan.com/CN/Y2019/V43/I6/1333
Fig.1  倾斜裂缝地层中的井眼模型
Fig.2  变网格差分示意
弹性介质 Vp/(m·s-1) Vs/(m·s-1) ρ/(kg·m-3)
5400 2905 2710.5
井眼及裂缝流体 Vp/(m·s-1) Vs/(m·s-1) ρ/(kg·m-3)
1500 1000
Table 1  模型的介质参数
Fig.3  有限差分与实轴积分法的结果对比
Fig.4  不同裂缝宽度的波形叠加
a—裂缝倾角0°;b—裂缝倾角25°
Fig.5  斯通利波衰减系数随裂缝宽度变化关系
a—裂缝倾角0°;b—裂缝倾角25°
Fig.6  横波衰减系数随裂缝宽度变化关系
a—裂缝倾角0°;b—裂缝倾角25°
Fig.7  不同倾角的波形对比
Fig.8  不同倾角的斯通利波衰减曲线综合分析
Fig.9  不同倾角的横波衰减曲线综合分析
Fig.10  钻井岩心
Fig.11  小岩心测量波形装置
Fig.12  小岩心不同裂缝宽度阵列波形
Fig.13  不同倾角岩心样品横波衰减系数随裂缝宽度变化关系
a—裂缝倾角0°;b—裂缝倾角25°;c—裂缝倾角55°;d—不同倾角的衰减曲线综合分析
Fig.14  衰减曲线叠加
[1] 邓少贵, 袁习勇, 王正楷 , 等. 裂缝性地层方位侧向测井响应数值模拟[J]. 地球物理学报, 2018,61(8):3457-3467.
[1] Deng S G, Yuan X Y, Wang Z K , et al. Numerical simulation of azimuthal laterolog response in fractured formation[J]. Chinese J. Geophys, 2018,61(8):3457-3467.
[2] 杨帆, 章成广, 范姗姗 . 利用斯通利波评价裂缝性致密砂岩储层的渗透性[J]. 石油天然气学报, 2012,34(4):88-92.
[2] Yang F, Zhang C G, Fan S S . Evaluating the permeability of fractured tight sandstone reservoirs with stoneley wave[J]. Journal of Oil and Gas Technology, 2012,34(4):88-92.
[3] 阎守国, 谢馥励, 龚丹 , 等. 含有倾斜薄裂缝孔隙地层中的井孔声场[J]. 地球物理学报, 2015,58(1):307-317.
doi: 10.6038/cjg20150128
[3] Yan S G, Xie F L, Gong D , et al. Borehole acoustic fields in porous formation with tilted thin fracture[J]. Chinese J. Geophys, 2015,58(1):307-317.
[4] Paillet F L, White J E . Acoustic modes of propagation in the borehole and their relationship to rock properties[J]. Geophysics, 1982,47(8):1215-1228.
[5] Hsu K, Brie A, Plumb R A. A new method for fracture identification using array sonic tools[C]// Presented at Ann. Conf.,Soc. Petr. Engr., 1985: 14397.
[6] Winkler K W, Liu H L, Johnson D L . Permeability and borehole Stoneley waves: comparison between experiment and theory[J]. Geophysics, 1989,54(1):66-77.
[7] 章成广, 肖承文, 李维彦 . 声波全波列测井响应特征及应用解释研究[M]. 武汉: 湖北科学技术出版社, 2008.
[7] Zhang C G, Xiao C W, Li W Y. Full wave acoustic logging response characteristics and application research of interpretation[M]. Wuhan: Hubei Science and Technology Press, 2008.
[8] Hornby B E, Johnson D L, Winkler K W , et al. Fracture evaluation using reflected Stoneley-wave arrivals[J]. Geophysics, 1989,54(10):1274-1288.
[9] Fan H, Smeulders D M J. Shock-induced Stoneley waves in fractured and permeable formations[C]// SEG Technical Program Expanded Abstracts, 2010: 558-562.
[10] Fan H, Smeulders D M J . Open borehole shock-induced Stoneley waves in fractured formations and mandrel samples[C]// SEG Technical Program Expanded Abstracts, 2011: 459-463.
[11] 龚丹, 章成广 . 裂缝性致密砂岩储层声波测井数值模拟响应特性研究[J]. 石油天然气学报, 2013,35(7):82-86.
[11] Gong D, Zhang C G . Research on Numerical simulation response characteristics of acoustic logging for fractured tight sandstone reservoirs[J]. Journal of Oil and Gas Technology, 2013,35(7):82-86.
[12] Matuszyk P J, Torres-Verdín C, Pardo D . Frequency-domain finite-element simulations of 2D sonic wireline borehole measurements acquired in fractured and thinly bedded formations[J]. Geophysics, 2013,78(4):193-207.
[13] Yuan M X, Pan B Z, Liu W B. Acoustic experimental measurement of fractured rocks and application to log evaluation of fractured reservoirs[C]// 2016 SEG Rock Physics & Borehole Geophysics Workshop, 2016: 73-76.
[14] 唐军, 章成广, 信毅 . 油基钻井液条件下裂缝声波测井评价方法:以塔里木盆地库车坳陷克深地区致密砂岩储集层为例[J]. 石油勘探与开发, 2017,44(3):389-397, 406.
[14] Tang J, Zhang C G, Xin Y . A fracture evaluation by acoustic logging technology in oil-based mud:A case from tight sandstone reservoirs in Keshen area of Kuqa depression,Tarim Basin,NW China[J]. Petroleum Exploration and Development, 2017,44(3):389-397,406.
[15] Leslie H D, Randall C J . Multipole sources in boreholes penetrating anisotropic formations[J]. The Journal of the Acoustical Society of America, 1992,91:12-17.
[16] Cheng N Y, Cheng C H, Toksoz M N . Borehole wave propagation in three dimensions[J]. The Journal of the Acoustical Society of America, 1995,97:3483-3493.
[17] Sinha B K, Ergün S, Liu Q H . Elastic-wave propagation in deviated wells in anisotropic formations[J]. Geophysics, 2006,71:191-202.
[18] 林伟军, 王秀明, 张海澜 . 倾斜地层中的井孔声场研究[J]. 地球物理学报, 2006,49(1):284-294.
[18] Lin W J, Wang X M, Zhang H L . Acoustic wave propagation in a borehole penetrating an inclined layered formation[J]. Chinese J. Geophys, 2006,49(1):284-294.
[19] 阎守国, 宋若龙, 吕伟国 . 横向各向同性地层斜井中正交偶极子激发声场的数值模拟[J]. 地球物理学报, 2011,54(9):2412-2418.
doi: 10.3969/j.issn.0001-5733.2011.09.025
[19] Yan S G, Song R L, Lü W G . Numerical simulation of acoustic fields excited by cross-dipole source in deviated wells in transversely isotropic formation[J]. Chinese J. Geophys, 2011,54(9):2412-2418.
[20] 孙卫涛, 杨慧珠 . 各向异性介质弹性波传播的三维不规则网格有限差分方法[J]. 地球物理学报, 2004,47(2):323-337.
[20] Sun W T, Yang H Z . A 3-D finite difference method using irregular crids for elastic wave propagation in anisotropic media[J]. Chinese J. Geophys, 2004,47(2):323-337.
[1] 张建智, 胡富杭, 刘海啸, 邢国章. 煤矿老窑采空区地—井TEM响应特征[J]. 物探与化探, 2022, 46(1): 191-197.
[2] 刘兰锋, 尹龙, 黄捍东, 周振亚, 董金超. 一种基于岩石物理建模的横波预测方法[J]. 物探与化探, 2021, 45(6): 1482-1487.
[3] 朱颜, 韩向义, 岳欣欣, 杨春峰, 常文鑫, 邢丽娟, 廖晶. 致密砂岩储层脆性测井评价方法研究及应用——以鄂尔多斯盆地渭北油田为例[J]. 物探与化探, 2021, 45(5): 1239-1247.
[4] 肖妍姗, 周正华, 苏杰, 魏鑫. 地表水平正反敲击激振下孔法剪切波速测试理论依据讨论[J]. 物探与化探, 2021, 45(5): 1288-1294.
[5] 夏暖, 鹿子林, 付俊东, 张建民, 王冬雷, 郑旭. 薄覆盖层隐伏断裂的纵横波联合探测[J]. 物探与化探, 2021, 45(2): 387-393.
[6] 苏鹏, 杨进. 时移电阻率反演模拟研究[J]. 物探与化探, 2021, 45(1): 159-164.
[7] 徐云霞, 文鹏飞, 张宝金, 刘斌. OBS在琼东南海域水合物矿体识别中的应用[J]. 物探与化探, 2020, 44(6): 1276-1282.
[8] 武建平, 张超, 陈剑平, 杨玺, 裴运军, 周庆东. 广域电磁法三维有限单元法模拟研究[J]. 物探与化探, 2020, 44(5): 1066-1072.
[9] 胡文革, 邹宁, 李丹丹, 黄知娟, 雷健, 郭宇航, 潘保芝. 断溶体油藏油源深度对井温分布影响的数值模拟[J]. 物探与化探, 2020, 44(4): 748-755.
[10] 甘团杰, 陈剑平, 杨玺, 周庆东, 曾亮. 海底电缆电磁场分布模拟与分析[J]. 物探与化探, 2020, 44(3): 550-558.
[11] 马修刚, 周军, 蔡文渊, 王伟, 于伟高, 曹先军, 孙佩. 反射波成像与纵波径向速度成像在华北油田裂缝型碳酸盐岩储层勘探开发中的联合应用[J]. 物探与化探, 2020, 44(2): 271-277.
[12] 王玉和, 崔增斌, 李春朋. 基于物探结果分析采动对急倾斜煤层底板突水影响[J]. 物探与化探, 2019, 43(6): 1399-1403.
[13] 李卓岱, 张怀强, 卢炜煌, 刘进洋, 颜苗苗. 宽能域γ能谱测井系统结构参数优化设计研究[J]. 物探与化探, 2019, 43(6): 1291-1296.
[14] 马董伟. 地震勘探方法在薄覆盖层区城市活断裂探测中的应用[J]. 物探与化探, 2019, 43(5): 1038-1045.
[15] 程志国, 胡婷婷, 魏凌云, 郭海洋. 准噶尔南缘山前二维多波勘探近地表影响因素分析[J]. 物探与化探, 2019, 43(4): 866-871.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com