Please wait a minute...
E-mail Alert Rss
 
物探与化探  2021, Vol. 45 Issue (2): 528-535    DOI: 10.11720/wtyht.2021.1084
  生态环境调查 本期目录 | 过刊浏览 | 高级检索 |
武清凹陷浅层含氟地下水演化特点及成因分析
申月芳(), 马晗宇, 杨耀栋, 曹阳
天津市地质矿产测试中心,天津 300191
Evolution characteristics and genesis of shallow fluorine-bearing groundwater in Wuqing Sag
SHEN Yue-Fang(), MA Han-Yu, YANG Yao-Dong, CAO Yang
Tianjin Geological and Mineral Testing Center, Tianjin 300191, China
全文: PDF(2380 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

选取武清北水源地所在Ⅳ级构造单元——武清凹陷为研究区,共布设地下水取样点95个。以第一含水组地下水中氟为研究对象,在水文地质调查及取样分析测试基础上,运用水化学图解、统计分析、水文地球化学模拟等方法,分析武清凹陷浅层地下水中F-含量空间分布特征、演化特点及成因。结果表明:研究区浅层地下水F-质量浓度总体较高,分布趋势为以WN—ES为轴线浓度最高,向两侧浓度逐渐降低;高氟地下水的水化学类型较复杂,总体具有弱碱性、高钠、低钙的特征;高氟水形成主要受控于该地区强烈的蒸发浓缩作用、萤石溶解作用、方解石—白云石沉淀作用和F-解吸作用等。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
申月芳
马晗宇
杨耀栋
曹阳
关键词 地下水氟离子水文地球化学空间分布演化特点水化学特征武清凹陷    
Abstract

In this paper, the Wuqing Sag, a fourth-level tectonic unit where the water source in the north of Wuqing is located, was selected as the research area, and 95 groundwater sampling points were set up. Fluoride groundwater in the first aquifer was taken as the study object.Based on hydrogeological survey and sample analysis, the authors investigated spatial distribution of F- concentrations as well as evolution feature and genesis of fluoride groundwater in shallow aquifer from Wuqing Sag by means of hydrogeochemical plot, statistic analysis and geochemical modeling. The results show that the mass concentration of F- in shallow groundwater in the study area is generally high, the distribution trend is that the concentration in the NW-SE direction is the highest, and the concentration gradually decreases toward both sides, that hydrogeochemical types of groundwater with high F- concentration are relatively complex, and have the characteristics of weak alkali, high sodium and low calcium, and that the formation of high-fluorine water is mainly controlled by the strong evaporation and concentration, fluorite dissolution, calcite-dolomite precipitation, and F- desorption in this area.

Key wordsgroundwater    fluoride    hydrogeochemistry    special distribution    evolution feature    hydrochemical characteristics    Wuqing Sag
收稿日期: 2020-02-22      修回日期: 2020-11-28      出版日期: 2021-04-20
ZTFLH:  P632  
基金资助:天津市武清区财政项目“2016年武清区人畜饮用水井水质监测、综合评价及规划设计”
作者简介: 申月芳(1987-),女,工程师,硕士研究生,主要从事水文地质及工程地质研究工作。Email: 690845244@qq.com
引用本文:   
申月芳, 马晗宇, 杨耀栋, 曹阳. 武清凹陷浅层含氟地下水演化特点及成因分析[J]. 物探与化探, 2021, 45(2): 528-535.
SHEN Yue-Fang, MA Han-Yu, YANG Yao-Dong, CAO Yang. Evolution characteristics and genesis of shallow fluorine-bearing groundwater in Wuqing Sag. Geophysical and Geochemical Exploration, 2021, 45(2): 528-535.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2021.1084      或      https://www.wutanyuhuatan.com/CN/Y2021/V45/I2/528
Fig.1  武清凹陷浅层地下水采样点位及F-质量浓度等值线分布
指标 ρ(F-)<1.0 mg·L-1水样(N=56) ρ(F-)>1.0 mg·L-1水样(N=39)
最小值 最大值 平均值 最小值 最大值 平均值
pH 7.42 8.26 7.81 7.72 8.32 8.02
ρ(F-)/(mg·L-1) 0.28 1.0 0.64 1.04 3.92 1.89
ρ(K+)/(mg·L-1) 0.3 31.2 3.1 0.4 2.2 1.0
ρ(Ca2+)/(mg·L-1) 20.7 316.0 156.4 25.1 215.4 75.7
ρ(Na+)/(mg·L-1) 38.3 530.3 192.7 46.4 610.3 273.9
ρ(Mg2+)/(mg·L-1) 12.9 216.9 76.1 14.8 175.2 72.1
ρ(HCO3-)/(mg·L-1) 360.0 1031.2 567.2 299.0 1119.7 726.6
ρ(SO42-)/(mg·L-1) 0.30 500.70 194.7 9.4 828.3 156.5
ρ(Cl-)/(mg·L-1) 28.4 1045.8 299.3 42.5 744.4 235.6
TDS值/(mg·L-1) 468.2 2600.7 1221.84 477 2825.75 1194.76
Table 1  武清凹陷地下水样化学组分特征
Fig.2  武清凹陷地下水样piper图
Fig.3  ρ(F-)与pH的关系
Fig.4  ρ(F-)与TDS的关系
Fig.5  ρ(F-)与ρ(Ca2+)的关系
Fig.6  ρ(F-)与ρ(SO42-)的关系
Fig.7  ρ(F-)与ρ(Cl-)的关系
Fig.8  Gibbs图
Fig.9  ρ(F-)与ρ(Na+)/[ρ(Na+)+ρ(Ca2+)]的关系
Fig.10  ρ(F-)与Ca2+活度的关系
Fig.11  ρ(F-)与白云石饱和指数的关系
Fig.12  ρ(F-)与方解石饱和指数的关系
Fig.13  ρ(F-)与萤石饱和指数的关系
Fig.14  ρ(F-)与ρ(HCO3-)/[ρ(HCO3-)+ρ(Cl-)]的关系
Fig.15  ρ(F-)与ρ(HCO3-)/[ρ(HCO3-)+ρ(SO42-)]的关系
[1] 国家质量监督检疫检验总局, 国家标准化管理委员会. GB/T14848—2017 地下水质量标准[S]. 北京: 标准出版社, 2017.
[1] General Administration of Quality Supervision, Inspection and Quarantine,Standadization Administration. GB/T14848—2017 Standard for groundwater quality[S]. Beijing: Standards Press, 2017.
[2] 中华人民共和国卫生部, 国家标准化管理委员会. GB5749—2006 生活饮用水卫生标准[S]. 北京: 标准出版社, 2006.
[2] Ministry of Health of the People's Republic of China,Standadization Administration. GB5749—2006 Standards for drinking water quality [S]. Beijing: Standards Press, 2017.
[3] 曾溅辉, 刘文生. 浅层高氟地下水元素的组分存在形式与地方性氟病之关系[J]. 水文地质工程地质, 1995,22(1):25-28.
[3] Zeng J H, Liu W S. The mode of occurrence in shallow high fluorine groundwater and its relationship to endemic fluorosis[J]. Hydrogeology and Engineering Geology, 1995,22(1):25-28.
[4] Gomez M L, Blarasin M T, Martnez D E. Arsenic and fluoride in a loess aquifer in the central area of Argentina[J]. Environmental Geology, 2009,57:143-155.
doi: 10.1007/s00254-008-1290-4
[5] Arveti N, Sarma M R S, Aitkenhead J A, et al. Fluoride incidence in groundwater: A case study from Talupula, Andhra Pradesh[J]. India Environmental Monitoring and Assessment, 2011,172:427-443.
pmid: 20140498
[6] 钱会, 马致远, 李培月. 水文地球化学[M]. 北京: 地质出版社, 2012.
[6] Qian H, Ma Z Y, Li P Y. Hydrogeochemistry[M]. Beijing: Geological Publishing House, 2012.
[7] 汤洁, 卞建民, 李昭阳, 等. 松嫩平原氟中毒地区地下水氟分布规律和成因研究[J]. 中国地质, 2010,37(1):615-620.
[7] Tang J, Bian J M, Li Z Y, et al. The distribution regularity and causes of luoride in groundwater of the fluorosis area, Songne Plain[J]. Geology in China, 2010,37(3):615-620.
[8] Dhiman S D, Keshari K. Hydrogeochemical evaluation of high-fluoride ground waters:A case study from Mehsana District, Gujarat, India[J]. Hydrological Sciences. 2006,51(6):1149-1162.
doi: 10.1623/hysj.51.6.1149
[9] Abida F, Harue M, Nousheen F. Toxic fluoride and arsenic contaminated groundwater in the Lahore and Kasur districts, Punjab, Pakistan and possible contaminant sources[J]. Environmental Pollution, 2006(7):1-11.
[10] Robertson F N. Solubity controls of fluorine, barium and chromium in groundwater in alluvial basins of Arizona[J]. National Water Well Association, 1984: 96-102.
[11] Gunnar J, Prosun B. Controls on the genesis of some high-fluoride groundwaters in India[J]. Applied Geochemistry, 2005(20):221-228.
doi: 10.1016/j.apgeochem.2004.07.002
[12] 曾溅辉, 刘文生, 彭玉荣. 浅层地下水氟的质量平衡反应模型及其化学演变[J]. 水文地质工程地质, 1995,22(5):12-16.
[12] Zeng J H, Liu W S, Peng Y R. The mass balance reaction models for fluorine in shallow groundwater and its chemical evolution[J]. Hydrogeology and Engineering Geology, 1995,22(5):12-16.
[13] 许光泉, 刘进, 朱其顺, 等. 安徽淮北平原浅层地下水中氟的分布特征及影响因素分析[J]. 水资源与水工程学报, 2009,20(5):9-13.
[13] Xu G Q, Liu J, Zhu Q S,etc.Analysis of distribution characteristics and influencing factors for the fluorine in the shallow groundwater in Huaibei Plain of Anhui[J]. Journal of Water Resources and Water Engineering, 2009,20(5):9-13.
[14] 李俊霞, 苏春利, 谢先军, 等. 多元统计方法在地下水环境研究中的应用——以山西大同盆地为例[J]. 地质科技情报, 2010,29(6):94-100.
[14] Li J X, Su C L, Xie X J, et al. Application of multivariate statistical analysis to research the environment of groundwater:A case study at Datong Basin,Northern China[J]. Geological Science and Technology Information, 2010,29(6):94-100.
[15] 沈照理, 朱宛华, 钟佐燊. 水文地球化学基础[M]. 北京: 地质出版社, 1993.
[15] Shen Z L, Zhu W H, Zhong Z S. Hydrogeochemical foundation[M]. Beijing: Geological Publishing House, 1993.
[16] Gibbs R J. Mechanisms controlling world water chemistry[J]. Science, 1970,170:1088-1090.
doi: 10.1126/science.170.3962.1088 pmid: 17777828
[17] Handa B K. Geochemistry and genesis of fluoride containing ground waters in India[J]. Ground Water, 1975,13(3):275-281.
doi: 10.1111/gwat.1975.13.issue-3
[18] 毛若愚, 郭华明, 贾永锋, 等. 内蒙古河套盆地含氟地下水分布特点及成因[J]. 地学前缘, 2016,23(2):260-267.
[18] Mao R Y, Guo H M, Jia Y F, et al. Distribution characteristics and genesis of fluoride groundwater in the Hetao basin, Inner Mongolia[J]. Earth Science Frontiers, 2016,23(2):260-268.
[19] 邢丽娜. 华北平原典型剖面上地下水化学特征和水文地球化学过程[D]. 北京:中国地质大学(北京), 2012.
[19] Xing L N. Groundwater hydrochemical characteristics and hydrogeochemical processes approximately along flow paths in the North China Plain[D]. Beijing:China University of Geosciences(Beijing), 2012.
[20] Karthikeyan M, Satheesh K K K, Elango K P. Conducting polymer/alumina composites as viable absorbents for the removal of fluoride ions from aqueous solution[J]. Journal of Fluorine Chemistry, 2009,130:894-901.
doi: 10.1016/j.jfluchem.2009.06.024
[21] Su C M, Plus R W. Asrenate and arsenite removal by zerovalent iron: Effects of phosphate, and nitrate, relative to chloride[J]. Environmental Science and Technology, 2001,35(22):4562-4568.
pmid: 11757617
[1] 范海印, 宋蕊蕊, 于林松, 滕永波, 万方, 张秀文, 李圣玉, 赵闯. 鲁西北地区某典型化工园区地下水重金属污染特征及健康风险评价[J]. 物探与化探, 2023, 47(5): 1326-1335.
[2] 李开富, 马欢, 张艳, 李威龙, 姜纪沂, 黄斌, 章龙管, 秦孟博. 基于时移电阻率法的平谷局部地区地下水时空特征研究[J]. 物探与化探, 2023, 47(4): 1002-1009.
[3] 杨天春, 胡峰铭, 于熙, 付国红, 李俊, 杨追. 天然电场选频法的响应特性分析与应用[J]. 物探与化探, 2023, 47(4): 1010-1017.
[4] 张志, 徐洪苗, 钱家忠, 谢杰, 陈皓龙, 朱紫祥. 综合物探方法在矿泉水勘查中的应用——以泾县榔桥地区为例[J]. 物探与化探, 2023, 47(3): 690-699.
[5] 王仕兴, 何可, 尹小康, 魏栋华, 赵思为, 郭明. 半航空瞬变电磁一维聚焦反演研究[J]. 物探与化探, 2023, 47(2): 410-419.
[6] 李秋燕, 张一鹤, 魏明辉, 贺鹏飞. 海伦市土壤主要微量元素空间分布特征[J]. 物探与化探, 2022, 46(5): 1114-1120.
[7] 石晓今, 李嫄嫄, 黄贤龙. 天津滨海新区深部地热流体水文地球化学特征[J]. 物探与化探, 2022, 46(2): 316-322.
[8] 郭培虹, 冯治汉, 王万银, 唐小平, 刘生荣. 北秦岭华阳川地区重磁三维反演及岩浆岩特征研究[J]. 物探与化探, 2021, 45(5): 1217-1225.
[9] 邬健强, 赵茹玥, 甘伏平, 张伟, 刘永亮, 朱超强. 综合电法在岩溶山区地下水勘探中的应用——以湖南怀化长塘村为例[J]. 物探与化探, 2020, 44(1): 93-98.
[10] 牛俊强, 范威, 郭昆. 武汉城市圈岩溶热储水化学特征及水—岩作用研究[J]. 物探与化探, 2019, 43(4): 741-748.
[11] 黄国民, 李世平, 陶毅, 杨承丰, 曾庆仕. 广西碎屑岩地区电法找水实例[J]. 物探与化探, 2019, 43(1): 77-83.
[12] 张振杰, 胡潇, 谢慧. 直流电测深法优化组合在河西走廊山前戈壁区的找水效果[J]. 物探与化探, 2018, 42(6): 1186-1193.
[13] 杨天春, 梁竞, 程辉, 曹书锦, 董绍宇, 宫玉菲. 天然电场选频法的浅层地下水勘探效果与异常分析[J]. 物探与化探, 2018, 42(6): 1194-1200.
[14] 杨艳林, 邵长生, 靖晶. 系统聚类法在划分岩溶地下水化学类型中的应用[J]. 物探与化探, 2018, 42(4): 738-744.
[15] 谢志峰, 杜发, 甘斌. 利用EH-4双源电磁系统评价浅层地下水[J]. 物探与化探, 2018, 42(2): 253-258.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com