Please wait a minute...
E-mail Alert Rss
 
物探与化探  2021, Vol. 45 Issue (2): 536-545    DOI: 10.11720/wtyht.2021.1418
  工程勘察 本期目录 | 过刊浏览 | 高级检索 |
基于线形台阵的高精度微动技术在城区岩性地层精细划分中的应用
陈基炜1(), 赵东东1(), 宗全兵2, 张宝松1, 邸兵叶1, 朱红兵1, 王佳龙1
1.中国地质调查局 南京地质调查中心,江苏 南京 210016
2.福州地铁集团有限公司,福建 福州 350000
High precision microtremor technology based on linear array and its application to the fine division of lithostratigraphy
CHEN Ji-Wei1(), ZHAO Dong-Dong1(), ZONG Quan-Bing2, ZHANG Bao-Song1, DI Bing-Ye1, ZHU Hong-bing1, WANG Jia-Long1
1. Nanjing Center,China Geological Survey,Nanjing 210016,China
2. Fuzhou Metro Group Co. Ltd,Fuzhou 350000, China
全文: PDF(6017 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

微动探测技术被广泛应用于构造、孤石、溶洞等勘查,但是,以常规圆形、嵌套三角形台阵等为代表的测量方式在城区施工会受到现场条件限制,难以实现长剖面数据的高效、高密度采集。针对这一问题,提出一种基于线形台阵多次覆盖的高效数据采集技术,该技术借鉴地震勘探多次覆盖观测系统的思想,布设一次线形台阵可以同时得到多个测点数据,可大大提高单台站数据的利用率。为了研究该采集技术的可行性和有效性,开展了单点频散曲线对比实验和横波速度剖面对比实验,并将其应用于福州城区岩性地层探测实验。实验结果表明:该技术极大地提升了微动数据采集的效率和测量密度,有效改善了探测精度和探测深度,为城市复杂地面环境下开展岩性地层精细划分提供了一种新的台阵布设方案。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈基炜
赵东东
宗全兵
张宝松
邸兵叶
朱红兵
王佳龙
关键词 线形台阵多次覆盖微动技术地层划分城市地质    
Abstract

The microtremor survey method is a new environmental protection geophysical exploration technology with strong anti-interference ability, large detection depth and wide application range. It has been widely used in structure, boulder, karst cave and some other fields. However, the single point data acquisition method represented by circular array is limited by the field conditions. It is difficult for this method to achieve high-efficiency and high-density data acquisition of long profile. This paper presents an efficient data acquisition technology based on linear array with multiple coverage in order to solve this problem. Based on the idea of multiple coverage observation system in seismic exploration, the dispersion curves of multiple measurement points can be obtained by setting up a linear array at one time, which greatly improves the utilization rate of single station data acquisition. The feasibility and effectiveness of the technology were studied by applying the technology to the detection of boulders along subway of Fuzhou airport. The experimental results show that the high-efficiency data acquisition technology based on linear array multiple coverage greatly improves the efficiency and density of microtremor data acquisition, effectively improves the detection accuracy and detection depth, and provides a new array layout scheme for urban complex ground environment.

Key wordslinear array multiple coverage    microtremor technology    stratigraphic division    urban geology
收稿日期: 2020-08-24      修回日期: 2020-12-07      出版日期: 2021-04-20
ZTFLH:  P631  
基金资助:中国地质调查局项目“福建省资源环境承载能力综合调查评价”(DD20190301)
通讯作者: 赵东东
作者简介: 陈基炜(1988-),男,工程师,研究方向为城市地下空间综合物探方法应用研究。Email: 648556511@qq.com
引用本文:   
陈基炜, 赵东东, 宗全兵, 张宝松, 邸兵叶, 朱红兵, 王佳龙. 基于线形台阵的高精度微动技术在城区岩性地层精细划分中的应用[J]. 物探与化探, 2021, 45(2): 536-545.
CHEN Ji-Wei, ZHAO Dong-Dong, ZONG Quan-Bing, ZHANG Bao-Song, DI Bing-Ye, ZHU Hong-bing, WANG Jia-Long. High precision microtremor technology based on linear array and its application to the fine division of lithostratigraphy. Geophysical and Geochemical Exploration, 2021, 45(2): 536-545.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2021.1418      或      https://www.wutanyuhuatan.com/CN/Y2021/V45/I2/536
Fig.1  微动探测工作流程
Fig.2  常用微动探测台阵观测示意
Fig.3  线形台阵多次覆盖台阵布设示意
a—线形连续台阵布设;b—线形连续加密台阵布设
采集时间/h 圆形台阵测点/个 三角形台阵测点/个 菱形台阵测点/个 十字形台阵测点/个 线形多次覆盖台阵测点/个
1 2 2 2 2 13
2 4 4 4 4 26
8 16 16 16 16 104
Table 1  不同台阵野外数据采集效率统计(24台采集站)
Fig.4  常用台阵与线形台阵的单点频散谱和频散曲线
a—三角形;b—圆形;c—L形;d—线形
Fig.5  线形台阵和圆形台阵横波视速度反演剖面
地层名称 横波波速/(m·s-1) 物性标本数 速度层
最小值 最大值 平均值
杂填土 138.25 139.53 138.89 2 A
填砂 126.00 162.00 142.97 9
淤泥质土 156.00 163.00 159.50 2
粉细砂 140.19 212.77 174.30 24
(泥质)粉细砂 208.00 251.00 230.80 5 B
(含泥)粉细砂 224.00 247.00 234.50 4
粉质黏土 208.00 228.00 218.50 4
粉质黏土 221.00 323.00 276.23 23
残积砂质黏性土 235.00 368.00 288.20 5
花岗岩球状风化(孤石) 500.00 580.00 540.00 3 C
砂土状强风化花岗岩 316.00 478.00 410.30 14
碎块状强风化花岗岩 523.00 687.00 608.33 6
中风化花岗岩 583.00 1136.00 922.54 28 D
中风化凝灰岩 863.00 998.00 921.00 3
Table 2  福州地铁F1沿线钻孔横波波速统计
Fig.6  线形台阵数据采集现场
Fig.7  SPAC法提取频散曲线
Fig.8  微动综合解释剖面
a—微动横波视速度反演剖面; b—地质解释剖面
岩性界面 分类 井号 均方相对误差
MJKZ-09-75 MJKZ-09-77 MJKZ-09-79 MJKZ-09-81 MJKZ-09-83 MJKZ-09-85
淤泥 钻孔结果 -5.4 -0.35 -2.23 / -1.54 / ±1.47
推测结果 -3.47 -2.44 -1.49 / -1.57 /
差值 1.93 2.09 0.74 / 0.03 /
残积砂质黏性土 钻孔结果 -14.4 -12.55 -11.53 -11.13 -11.14 -15.47 ±1.54
推测结果 -10.94 -13.74 -12.26 -10.61 -11.13 -15.7
差值 3.46 1.19 0.73 0.52 0.01 0.23
全风化花岗岩 钻孔结果 -19.2 -19.55 -17.23 -17.93 -18.24 -21.77 ±2.44
推测结果 -16.45 -23.37 -18.69 -18.22 -21.61 -22.1
差值 2.75 3.82 1.46 0.29 3.37 0.33
强风化花岗岩 钻孔结果 -33.7 / -31.43 -26.33 -27.04 -28.27 ±2.68
推测结果 -29.35 / -28.19 -23.87 -26.85 -28.87
差值 4.35 / 3.24 2.46 0.19 0.6
总体均方相对误差: ±2.03
Table 3  推测地层岩性界面海拔精度统计
[1] 韩伯文. 关于地微动若干问题的探讨[J]. 中国地质灾害与防治学报, 1991,2(S):22-26.
[1] Han B W. Discussion on probles of microseisim[J]. The Chinese Journal of Geological Hazard and Control, 1991,2(S):22-26.
[2] 孙勇军, 徐佩芬, 凌甦群, 等. 微动勘查方法及其研究进展[J]. 地球物理学进展, 2009,24(1):326-334.
[2] Sun Y J, Xu P F, Ling S Q, et al. Microtremor survey method and its progress[J]. Progress in Geophysics, 2009,24(1):326-334.
[3] NafiToksöZ M, Lacoss R T. Microseisms: Mode structure and sources[J]. Science, 1968,159(3817):872-873.
doi: 10.1126/science.159.3817.872 pmid: 17768976
[4] 赵东. 被动源面波勘探方法与应用[J]. 物探与化探, 2011,34(6):759-764.
[4] Zhao D. Passive surface waves methods and applications[J]. Geophysical and Geochemical Exploration, 2011,34(6):759-764.
[5] Aki K. Space and time spectra of stationary stochastic waves with special reference to microtremors[J]. Bulletin of the Earthquake Research Institute, 1957,35:415-456.
[6] Capon J. Applications of detection and estimation theory to large array seismology[J]. Proceedings of the IEEE, 1970,58(5):760-770.
[7] 叶太兰. 微动台阵探测技术及其应用研究[J]. 中国地震, 2004,20(1):47-52.
[7] Ye T L. The exploration technique microtremor array and its application[J]. Earthquake Research, 2004,20(1):47-52.
[8] 王振东. 微动的空间自相关法及其实用技术[J]. 物探与化探, 1986,10(2):123-132.
[8] Wang Z D. The micromotional spatial autocorrelation method and its practical technique[J]. Geophysical and Geochemical Exploration, 1986,10(2):123-132.
[9] 冉伟彦, 王振东. 长波微动法及其新进展[J]. 物探与化探, 1994,18(1):28-34.
[9] Ran W Y, Wang Z D. The long-wave microtremors method and its advances[J]. Geophysical and Geochemical Exploration, 1994,18(1):28-34.
[10] 徐佩芬, 李世豪, 杜建国, 等. 微动探测:地层分层和隐伏断裂构造探测的新方法[J]. 岩石学报, 2013,29(5):1841-1845.
[10] Xu P F, Li S H, Du J G, et al. Microtremor survey method: A new geophysical method for dividing strata and detecting the buried fault structures[J]. Acta Petrologica Sinica, 2013,29(5):1841-1845.
[11] 刁天仁, 杜霏. 综合物探方法在安徽省岳西县溪沸地热勘探中的应用[J]. 工程地球物理学报, 2019,16(6):815-821.
[11] Diao T R, Du F. Application of integrated geophysical exploration method to Xifei geothermal exploration in Yuexi county of Anhui province[J]. Chinese Journal of Engineering Geophysics, 2019,16(6):815-821.
[12] 曹振国. 微动观测方法在煤矿陷落柱探测中的应用[J]. 山东煤炭科技, 2010(1):89-90.
[12] Cao Z G. Application of the microtremor survey method in coal mine collapse column detection[J]. Shandong Coal Science and Technology, 2010(1):89-90.
[13] 李耐宾, 裴世建. 微动技术在大连地铁岩溶勘察中的应用[J]. 工程地球物理学报, 2019,16(5):580-585.
[13] Li N B, Pei S J. Application of the microtremor technology in karst investigation of Dalian Metro[J]. Chinese Journal of Engineering Geophysics, 2019,16(5):580-585.
[14] 黄光明, 赵举兴, 李长安, 等. 岩溶区地下溶洞综合物探探测试验研究——以福建省永安大湖盆地为例[J]. 地球物理学进展, 2019,34(3):1184-1191.
[14] Huang G M, Zhao J X, Li C A, et al. Detection of underground karst caves by comprehensive geophysical exploration in karst area: taking Dahu basin in Fujian province as example[J]. Progress in Geopgysics, 2019,34(3):1184-1191.
[15] 查雁鸿. 城市强干扰条件下无损地质勘查的一种有效方法——微动法[J]. 城市建设理论研究(电子版), 2018(34):86.
[15] Zha Y H. An effective method of non-destructive geological survey under strong interference conditions in cities-Microtremor survey method[J]. Urban Construction Theory Research (electronic version), 2018(34):86.
[16] 李雪燕, 陈晓非, 杨振涛, 等. 城市微动高阶面波在浅层勘探中的应用:以苏州河地区为例[J]. 地球物理学报, 2020,63(1):247-255.
[16] Li X Y, Chen X F, Yang Z T, et al. Application of high-order surface waves in shallow exploration:An example of the Suzhou river,Shanghai[J]. Chinese Journal Geophysics, 2020,63(1):247-255.
[17] 李巧灵, 雷晓东, 李晨, 等. 微动测深法探测厚覆盖层结构——以北京城市副中心为例[J]. 地球物理学进展, 2019,34(4):1635-1643.
[17] Li Q L, Lei X D, Li C, et al. Exploring thick overburden structure by microtremor survey: A case study in the subsidiary administrative center[J]. Progress in Geophysics, 2019,34(4):1635-1643.
[18] 李万伦, 田黔宁, 刘素芳, 等. 城市浅层地震勘探技术进展[J]. 物探与化探, 2018,42(4):653-661.
[18] Li W L, Tian Q N, Liu S F, et al. Progress in the study of shallow seismic exploration technology in urban Areas[J]. Geophysical and Geochemical Exploration, 2018,42(4):653-661.
[19] 林朝旭. 地铁盾构区间孤石与基岩凸起等不良地质体探测新方法[J]. 工程地球物理学报, 2018,15(4):432-439.
[19] Lin C X. A new method to detect adverse geological bodies in urban metro shield construction[J]. Chinese Journal of Engineering Geophysics, 2018,15(4):432-439.
[20] 徐佩芬, 侍文, 凌苏群, 等. 二维微动剖面探测“孤石”:以深圳地铁7号线为例[J]. 地球物理学报, 2012,55(6):2120-2128.
[20] Xu P F, Shi W, Ling S Q, et al. Mapping spherically weathered “boulders”using 2D microtremor profiling Method: A case study along subway line 7 in Shenzhen[J]. Chinese Journal of Geophysics, 2012,55(6):2120-2128.
[21] 章飞亮, 闫高翔, 袁真秀, 等. 微动技术在地铁隧道区间孤石探测中的应用[J]. 工程地球物学报, 2015,12(6):817-822.
[21] Zhang F L, Yan G X, Yuan Z X, et al. The application of micro technology to boulders detection in Subway Tunnel[J]. Chinese Journal of Engineering Geophysics, 2015,12(6):817-822.
[22] 刘宏岳, 黄佳坤, 孙智勇, 等. 微动探测方法在城市地铁盾构施工“孤石”探测中的应用——以福州地铁1号线为例[J]. 隧道建设, 2016,36(12):1500-1506.
[22] Liu H Y, Huang J K, Sun Z Y, et al. Application of microtremor method to boulders detection in Urban metro shield construction: case ctudy of fuzhou metro line No.1[J]. Tunnel Construction, 2016,36(12):1500-1506.
[23] 高艳华, 黄溯航, 刘丹, 等. 微动探测技术及其工程应用进展[J]. 科学技术与工程, 2018,18(23):146-155.
[23] Gao Y H, Huang S H, Liu D, et al. Microtremor detection technology and its new progress in engineering Application[J]. Science Technology and Engineering, 2018,18(23):146-155.
[24] 李井冈, 姚运生, 张丽芬, 等. 微动探测方法软件的实现[J]. 地震工程学报, 2017,39(2):376-380.
[24] Li J G, Yao Y S, Zhang L F, et al. Implementation of the microtremor survey method software[J]. China Earthquake Engineering Journal, 2017,39(2):376-380.
[25] 陈建兴, 郑有强, 周会信, 等. 福州地铁F1线工程详勘报告[R]. 福建华东岩土工程有限公司, 2019.
[25] Chen J X, Zheng Y Q, Zhou H X, et al. Detailed investigation report of fuzhou metro line No.F1[R]. Fujian Huadong Geotechnical Engineering Co.,Ltd., 2019.
[1] 何胜, 王万平, 董高峰, 南秀加, 魏丰丰, 白勇勇. 等值反磁通瞬变电磁法在城市地质调查中的应用[J]. 物探与化探, 2023, 47(5): 1379-1386.
[2] 刘铁华, 刘铁, 张邦, 卞友艳, 张占荣, 化希瑞. 基于非均匀介质的谱比曲线正演技术及应用[J]. 物探与化探, 2022, 46(5): 1276-1282.
[3] 王亮, 龙霞, 王婷婷, 席振铢, 陈兴朋, 钟明峰, 董志强. 等值反磁通瞬变电磁法在城市浅层空洞探测中的应用[J]. 物探与化探, 2022, 46(5): 1289-1295.
[4] 张晓亮, 白凌燕, 倪敬波, 王志辉, 赵勇, 何付兵. 北京平原区隐伏断裂与氡浓度响应关系[J]. 物探与化探, 2022, 46(2): 344-351.
[5] 徐浩, 吴小平, 盛勇, 廖圣柱, 贾慧涛, 徐子桥. 微动勘探技术在城市地面沉降检测中的应用研究[J]. 物探与化探, 2021, 45(6): 1512-1519.
[6] 苏宝, 刘晓丽, 卫晓波, 高歌, 王云鹏. 井间超高密度电阻率法溶洞探测研究[J]. 物探与化探, 2021, 45(5): 1354-1358.
[7] 刘伟, 黄韬, 王庭勇, 刘怡, 张继, 刘文涛, 张琦斌, 李强. 综合物探方法在城市隐伏断裂探测中的应用[J]. 物探与化探, 2021, 45(4): 1077-1087.
[8] 高武平, 闫成国, 张文朋, 王志胜. 电阻率层析成像在沉积区隐伏断层探测中的应用[J]. 物探与化探, 2020, 44(6): 1352-1360.
[9] 韩佳明, 仲鑫, 景帅, 刘平. 探地雷达在黄土地区城市地质管线探测中的应用[J]. 物探与化探, 2020, 44(6): 1476-1481.
[10] 陈实, 李延清, 李同贺, 金荣杰, 张静. 天然源面波技术在乌鲁木齐城市地质调查中的应用[J]. 物探与化探, 2019, 43(6): 1389-1398.
[11] 何育枫, 李晓娟, 佘继红, 陈晔, 徐礼鹏. 基于T-C-V架构的三维城市地质信息共享平台建设[J]. 物探与化探, 2018, 42(4): 804-810.
[12] 胡让全, 黄健民. 综合物探方法在广州市金沙洲岩溶地面塌陷、地面沉降地质灾害调查中的应用[J]. 物探与化探, 2014, (3): 610-615.
[13] 孙明, 林君. 高分辨率轻便可控震源系统实现评价城市地质隐患[J]. 物探与化探, 2009, 33(4): 440-443.
[14] 李继军, 汪启年. 重磁电综合解释方法 在天津城市三维地质结构调查中的应用[J]. 物探与化探, 2007, 31(5): 444-450.
[15] 宫进忠, 杨立寰, 杨书辰. 河北省化学地层研究[J]. 物探与化探, 2003, 27(4): 276-279.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com