E-mail Alert Rss
 

物探与化探, 2021, 45(2): 528-535 doi: 10.11720/wtyht.2021.1084

生态环境调查

武清凹陷浅层含氟地下水演化特点及成因分析

申月芳,, 马晗宇, 杨耀栋, 曹阳

天津市地质矿产测试中心,天津 300191

Evolution characteristics and genesis of shallow fluorine-bearing groundwater in Wuqing Sag

SHEN Yue-Fang,, MA Han-Yu, YANG Yao-Dong, CAO Yang

Tianjin Geological and Mineral Testing Center, Tianjin 300191, China

责任编辑: 蒋实

收稿日期: 2020-02-22   修回日期: 2020-11-28   网络出版日期: 2021-04-20

基金资助: 天津市武清区财政项目“2016年武清区人畜饮用水井水质监测、综合评价及规划设计”.  

Received: 2020-02-22   Revised: 2020-11-28   Online: 2021-04-20

作者简介 About authors

申月芳(1987-),女,工程师,硕士研究生,主要从事水文地质及工程地质研究工作。Email: 690845244@qq.com

摘要

选取武清北水源地所在Ⅳ级构造单元——武清凹陷为研究区,共布设地下水取样点95个。以第一含水组地下水中氟为研究对象,在水文地质调查及取样分析测试基础上,运用水化学图解、统计分析、水文地球化学模拟等方法,分析武清凹陷浅层地下水中F-含量空间分布特征、演化特点及成因。结果表明:研究区浅层地下水F-质量浓度总体较高,分布趋势为以WN—ES为轴线浓度最高,向两侧浓度逐渐降低;高氟地下水的水化学类型较复杂,总体具有弱碱性、高钠、低钙的特征;高氟水形成主要受控于该地区强烈的蒸发浓缩作用、萤石溶解作用、方解石—白云石沉淀作用和F-解吸作用等。

关键词: 地下水 ; 氟离子 ; 水文地球化学 ; 空间分布 ; 演化特点 ; 水化学特征 ; 武清凹陷

Abstract

In this paper, the Wuqing Sag, a fourth-level tectonic unit where the water source in the north of Wuqing is located, was selected as the research area, and 95 groundwater sampling points were set up. Fluoride groundwater in the first aquifer was taken as the study object.Based on hydrogeological survey and sample analysis, the authors investigated spatial distribution of F- concentrations as well as evolution feature and genesis of fluoride groundwater in shallow aquifer from Wuqing Sag by means of hydrogeochemical plot, statistic analysis and geochemical modeling. The results show that the mass concentration of F- in shallow groundwater in the study area is generally high, the distribution trend is that the concentration in the NW-SE direction is the highest, and the concentration gradually decreases toward both sides, that hydrogeochemical types of groundwater with high F- concentration are relatively complex, and have the characteristics of weak alkali, high sodium and low calcium, and that the formation of high-fluorine water is mainly controlled by the strong evaporation and concentration, fluorite dissolution, calcite-dolomite precipitation, and F- desorption in this area.

Keywords: groundwater ; fluoride ; hydrogeochemistry ; special distribution ; evolution feature ; hydrochemical characteristics ; Wuqing Sag

PDF (2380KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

申月芳, 马晗宇, 杨耀栋, 曹阳. 武清凹陷浅层含氟地下水演化特点及成因分析. 物探与化探[J], 2021, 45(2): 528-535 doi:10.11720/wtyht.2021.1084

SHEN Yue-Fang, MA Han-Yu, YANG Yao-Dong, CAO Yang. Evolution characteristics and genesis of shallow fluorine-bearing groundwater in Wuqing Sag. Geophysical and Geochemical Exploration[J], 2021, 45(2): 528-535 doi:10.11720/wtyht.2021.1084

0 引言

氟是自然界中广泛分布且与人体健康密切相关的微量元素之一,在我国由饮用高氟水导致的地方病现象广泛存在。《地下水质量标准》(GB/T14848—2017)[1]和《生活饮用水卫生标准》(GB5749—2006)[2]规定:饮用水F-质量浓度不得超过1.0 mg/L。长期饮用氟超标水可造成体内氟元素过量,甚至引起氟中毒[3]。天津市武清区属资源型缺水区,由于早前不适当的开发利用水资源,造成区内水资源极度短缺,大量环境水文地质问题层出不穷,劣质水体(高氟、高砷)地下水广泛分布,已成为制约武清区发展的重要因素之一。而目前关于该地区地下水氟的分布特征及成因机理研究较欠缺,因此,查明地下水中氟的空间分布、演化成因,对合理开发利用区域地下水资源、切实保障人民饮水安全具有重大现实意义[4,5,6]

国内外关于高氟地下水的空间分布、来源分析、演化成因等方面已有大量研究成果。空间分布方面,认为高氟地下水多分布于气候干旱、地形低洼、地下水径流迟缓的地区[7];来源分析方面,认为地下水中的氟主要来源于降雨入渗、土壤层淋滤及含氟矿物溶解等[8,9];演化成因方面,认为水化学类型、蒸发浓缩作用、矿物结晶沉淀与阳离子交换、吸附是控制氟富集的主要因素[10,11,12,13,14]

笔者以武清北水源地所在构造单元——武清凹陷为研究对象,分析区内浅层地下水中氟的空间分布规律、演化特点及成因,为该区地下水资源管理提供科学依据。

1 材料和方法

1.1 研究区概况

武清凹陷位于天津市西部,武清区中北部,属于华北平原东部冲、洪积平原区,区内分布巨厚的新生代沉积物,地势平缓,总体自WN向ES方向倾斜。行政区划涉及武清城关、大孟庄、河西务、大王古、河北屯、下伍旗等12个乡镇。为缓解武清区水资源严重短缺而开辟的武清北应急供水水源地位于下伍旗—河北屯一带。研究区气候类型属暖温带大陆型季风气候,年均气温11.6 ℃,年均降水量606.8 mm,年均蒸发量1 700 mm。

研究区地下水主要赋存于第四系岩土孔隙中,根据其埋藏条件、水力特征,该含水系统自上而下可划分为4个含水岩组:第一含水组底界埋深70~120 m,为潜水、微承压水,地下水循环交替能力强,该层水开采利用程度较高,是农业灌溉用水的主要开采层位,在没有集中供水的农村地区,是人畜饮用水的主要开采层位;第二含水组底界埋深一般小于200 m;第三含水组底界埋深在300 m左右;第四含水组底界埋深在350~400 m,该层是城镇及农村集中生活供水的主要开采层。笔者将含水岩组的第一含水组划分为浅层地下水,第二至第四含水岩组划分为深层地下水。

1.2 样品的采集和分析

本次地下水取样工作于2016年5月集中开展,主要包括研究区内浅层地下水农牧业机井、生活用水取水井等,共计95个取样点(图1)。严格按照《地下水环境监测技术规范》(HJ/T164—2004)标准进行现场记录、取样。取样深度均小于90 m。对样品的pH值、井深、水温进行现场测定。样品封装后送达天津市地质矿产测试中心,在实验室内对K+、Na+采用火焰原子吸收分光光度法测定,对Ca2+、Mg2+采用等离子发射光谱法测定,对阴离子采用离子色谱法测定,HC O3-采用酸碱滴定法测定,TDS采用称量法测定。

图1

图1   武清凹陷浅层地下水采样点位及F-质量浓度等值线分布

Fig.1   Location of sampling sites and distribution of F- concentration of groundwater in shallow aquifer in Wuqing Sag


2 浅层地下水中氟的空间分布特征

本次研究所指的浅层地下水是指含水层埋深在0~100 m之间的地下水。从分析测试结果看,武清凹陷浅层地下水的F-质量浓度为0.28~3.92 mg/L。利用Sufer软件及已获得的参数将F-质量浓度值进行克里格插值计算,并将差值后的结果导入Mapgis软件,获得研究区浅层地下水中F-质量浓度空间分布规律。

图1可知,武清凹陷区内浅层地下水F-质量浓度总体较高,分布趋势为以WN—ES为轴线浓度最高,向两侧浓度逐渐降低。F-质量浓度高于2.0 mg/L的地区主要集中在河西务镇、白古屯南部、泗村店北部、大良镇部分区域;F-质量浓度为1.0~2.0 mg/L的地区则集中在高村、大王古、武清城关等西部城镇;研究区东部及南部部分区域浅层地下水F-质量浓度普遍小于1.0 mg/L。地下水高氟分布范围与北京排污河水系走向较为吻合。

3 含氟地下水化学特征

3.1 地下水化学类型

研究区浅层地下水水化学类型复杂,其水化学特征见表1。地下水的优势阳离子为Na+、Ca2+和Mg2+,优势阴离子为$HCO_{3}^{-}$及Cl-。地下水中溶解性总固体的质量浓度分布范围为468.2~2 825.75 mg/L。该地区高氟浅层地下水化学类型以HCO3-Na、HCO3-Na·Mg、HCO3-Na·Ca·Mg、HCO3·Cl-Na为主(图2)。总体上,高氟地下水具有弱碱性、高钠、低钙的水化学特征。

表1   武清凹陷地下水样化学组分特征

Table 1  Descriptive statistics of chemical composition for groundwater samples from Wuqing Sag

指标ρ(F-)<1.0 mg·L-1水样(N=56)ρ(F-)>1.0 mg·L-1水样(N=39)
最小值最大值平均值最小值最大值平均值
pH7.428.267.817.728.328.02
ρ(F-)/(mg·L-1)0.281.00.641.043.921.89
ρ(K+)/(mg·L-1)0.331.23.10.42.21.0
ρ(Ca2+)/(mg·L-1)20.7316.0156.425.1215.475.7
ρ(Na+)/(mg·L-1)38.3530.3192.746.4610.3273.9
ρ(Mg2+)/(mg·L-1)12.9216.976.114.8175.272.1
ρ(HCO3-)/(mg·L-1)360.01031.2567.2299.01119.7726.6
ρ(SO42-)/(mg·L-1)0.30500.70194.79.4828.3156.5
ρ(Cl-)/(mg·L-1)28.41045.8299.342.5744.4235.6
TDS值/(mg·L-1)468.22600.71221.844772825.751194.76

新窗口打开| 下载CSV


图2

图2   武清凹陷地下水样piper图

Fig.2   Piper diagram of groundwater samples from Wuqing Sag


3.2 F-质量浓度与pH值的关系

利用SPSS软件计算F-质量浓度与pH值的相关性系数为0.426,呈中等正相关关系。研究区内高氟地下水(ρ(F-)>1.0 mg/L)pH值为7.72~8.32(图3),均为碱性水,表明碱性水更有利于氟的溶解、迁移;但F-质量浓度并没有随pH值增大而持续升高(图3),表明pH值对地下水中氟的富集具有一定影响,但并不是唯一因素,高氟水仅出现在特定的pH值范围内。

图3

图3   ρ(F-)与pH的关系

Fig.3   Relationship between F- concentration and pH


3.3 F-质量浓度与TDS的关系

F-质量浓度与TDS的关系可分为3类(图4):第一类,低TDS、高氟水,ρ(F-)介于1.08~3.92之mg/L之间,TDS介于0.48~1.37 g/L之间;第二类,中TDS、中氟水,ρ(F-)介于0.47~1.42 mg/L之间,TDS介于1.55~2.82 g/L之间;第三类,低TDS、低氟水,ρ(F-)介于0.28~1.08 mg/L之间,TDS介于0.47~1.49 g/L之间。

图4

图4   ρ(F-)与TDS的关系

Fig.4   Relationship between F- concentration and TDS


3.4 F-质量浓度与其他离子的关系

利用SPSS软件计算ρ(F-)与ρ(Ca2+)的相关性系数为-0.6,呈显著负相关关系。研究区浅层地下水ρ(Ca2+)为20.7~316 mg/L,而高氟地下水(ρ(F-)>1.0 mg/L)的ρ(Ca2+)介于25.1~164.8 mg/L(图5),表明Ca2+浓度较低的地下水中,F-更容易富集。这主要是由于地下水中ρ(Ca2+)的升高会使其与F-发生反应,形成CaF2沉淀,从而降低水中ρ(F-);而Ca2+浓度降低,则氟化物受CaF2沉淀作用的限制解除。

图5

图5   ρ(F-)与ρ(Ca2+)的关系

Fig.5   Relationship between F- and Ca2+ concentrations


由于浅层地下水与外界水力联系较为密切,因此势必会受到不同程度的人类活动的影响。而Cl-与S O42-均具有较强的迁移性能[15],可以作为地下水是否受到人类污染的示踪剂。研究区地下水中ρ(F-)与ρ(Cl-)、ρ(F-)与ρ(S O42-)相关性均较差(图6图7),利用SPSS软件计算ρ(F-)与ρ(Cl-)的相关性系数为-0.13,ρ(F-)与ρ(S O42-)的相关性系数为-0.15,表明尽管地下水高氟分布范围与北京排污河水系走向吻合,但人类活动并不是引起研究区地下水中氟超标的主要因素。

图6

图6   ρ(F-)与ρ(SO42-)的关系

Fig.6   Relationship between F- and SO42- concentrations


图7

图7   ρ(F-)与ρ(Cl-)的关系

Fig.7   Relationship between F- and Cl- concentrations


4 高氟水演化成因分析

4.1 蒸发浓缩作用

研究区气候类型为暖温带大陆型季风气候,年均降水量606.8 mm,年均蒸发量1 700 mm,蒸发浓缩作用强烈;且研究区处于径流排泄区,地下水径流缓慢、排泄以蒸发为主。利用Gibbs图可分析地下水的成因机制[16]。研究区地下水采样点主要集中在Gibbs图右上角(图8),表明研究区浅层地下水主要受蒸发浓缩作用影响。强烈的蒸发作用一方面引起地下水中各组分(包括F-)的浓缩[17],另一方面使白云石、方解石趋于沉淀方向,导致Ca2+减小,ρ(Na+)/[ρ(Na+)+ρ(Ca2+)]升高,释放更多F-。研究区ρ(F-)与ρ(Na+)/[ρ(Na+)+ρ(Ca2+)]呈明显的正相关关系(图9),相关性系数高达0.71,表明蒸发浓缩作用是研究区地下水氟富集的主要原因,同时也进一步证明了地下水中Na+对氟富集的正向作用及Ca2+对氟富集的反向作用。

图8

图8   Gibbs图

Fig.8   Gibbs plot


图9

图9   ρ(F-)与ρ(Na+)/[ρ(Na+)+ρ(Ca2+)]的关系

Fig.9   Relationship between ρ(F-)and ρ(Na+)/[ρ(Na+)+ρ(Ca2+)]


4.2 溶解—沉淀作用

溶解—沉淀作用是指水岩相互作用引起岩石中的某些物质由固相转为液相,或地下水中某些组分由液相转为固相。地下水中F-质量浓度与Ca2+质量浓度主要受萤石溶解度的影响,当F-与Ca2+的离子活度积达不到萤石的溶解积时,萤石溶解平衡会向这溶解方向移动,水中Ca2+质量浓度逐渐增加,F-质量浓度也随之增加;当两者的离子活度积大于萤石溶解积时,F-质量浓度随Ca2+质量浓度增大而减小[18]。研究区所有采样点都位于萤石溶解平衡线(lgK=10.6)的左下方(图10),说明研究区地下水中F-与Ca2+的峰值浓度受萤石溶解度控制。

图10

图10   ρ(F-)与Ca2+活度的关系

Fig.10   Relationship of activities between F- and Ca2+


当水中溶解矿物只有萤石时,F-与Ca2+活度的关系呈现沿趋势线1方向递增;当溶解矿物为萤石和方解石,且质量比例呈1∶200时,F-与Ca2+质量浓度同步升高,其溶解方向沿趋势线2方向增加;当Ca2+活度沿趋势线3方向递减时,地下水中可能发生方解石沉淀或阳离子交换作用[18,19]

研究区地下水采样点大部分落在趋势线1和2之间(图10),且F-与Ca2+活度关系呈显著负相关(相关性系数为-0.77),表明该区地下水中F-浓度受到萤石与方解石溶解质量比例>1∶200混合溶解作用控制,同时方解石、白云石沉淀或阳离子交换作用降低Ca2+活度,促进萤石溶解,使水中F-浓度增大;少部分研究区地下水ρ(F-)≤1.0 mg/L的点位落在趋势线2右下方(图10),表明其受萤石与方解石溶解质量比例<1∶200混合溶解作用控制;此外,还有部分点位在趋势线3上下徘徊,推测可能发生方解石沉淀和(或)阳离子交换作用。

通过PHREEQC软件对研究区地下水中白云石、方解石、萤石的饱和指数进行了计算,各矿物饱和指数与氟的质量浓度关系如图11~13。当矿物饱和指数大于0时,矿物呈饱和状态;当饱和指数小于0时,矿物处于不饱和状态。研究区地下水中的白云石及方解石均呈饱和状态(图11、12),而方解石和白云石的过饱和使Ca2+浓度降低,从而促进萤石溶解,引起水中F-浓度升高;地下水F-质量浓度随萤石饱和指数呈对数增加趋势(图13),表明Ca2+、F-质量浓度的上限均受控于萤石溶解度。

图11

图11   ρ(F-)与白云石饱和指数的关系

Fig.11   Relationship between F- concentration and saturation index of dolomine


图12

图12   ρ(F-)与方解石饱和指数的关系

Fig.12   Relationship between F- concentration and saturation index of calcite


图13

图13   ρ(F-)与萤石饱和指数的关系

Fig.13   Relationship between F- concentration and saturation index of fluorite


4.3 吸附—解吸作用

萤石溶解是研究区地下水氟的主要天然来源,而吸附态氟则是另一个不可忽视的来源。研究表明地下水中,OH-与F-存在竞争吸附关系[20]。研究区地下水pH值为7.72~8.32,偏碱性,地层沉积物表面电荷偏负极,溶解态的OH-会置换出沉积物表面的吸附态F-,使其释放至水中,导致地下水中F-浓度增大。

地下水碱性环境中,HC O3-也是F-的强力竞争吸附离子[21]。地下水中大量HC O3-同样会抑制F-的吸附作用,促进其从沉积物中解析出来,导致地下水中F-浓度增大。研究区地下水ρ(F-)与 ρ(HC O3-)/[ρ(HC O3-)+ρ(Cl-)]、ρ(HC O3-)/[ρ(HC O3-)+ρ(S O42-)]的正相关性(图14图15)验证了这一观点。

图14

图14   ρ(F-)与ρ(HCO3-)/[ρ(HCO3-)+ρ(Cl-)]的关系

Fig.14   Relationship between ρ(F-) and ρ(HCO3-)/[ρ(HCO3-)+ρ(Cl-)]


图15

图15   ρ(F-)与ρ(HCO3-)/[ρ(HCO3-)+ρ(SO42-)]的关系

Fig.15   Relationship between ρ(F-) and ρ(HCO3-)/[ρ(HCO3-)+ρ(SO42-)]


5 结论及建议

5.1 结论

1) 武清凹陷区内浅层地下水F-质量浓度总体较高,变化范围为0.28~3.92 mg/L,分布趋势为以WN—ES为轴线浓度最高,向两侧浓度逐渐降低。地下水氟超标面积为25 km2。地下水高氟分布范围与北京排污河水系走向虽较为吻合,但通过对研究区高氟地下水的化学组成及成因分析,人类活动并不是影响研究区地下水中高氟现象的主要因素。

2) 研究区高氟地下水的水化学类型较复杂,主要以HCO3-Na、HCO3-Na·Mg、HCO3-Na·Ca·Mg、HCO3·Cl-Na为主,具有弱碱性、高钠、低钙的化学特征。总体上,HC O3-、Na+富集的弱碱性环境对氟的富集更加有利,而Ca2+则会对氟的富集形成抑制作用。

3) 研究区高氟水的成因包含地下水补、径、排条件、赋存环境、人类活动等多种因素,但主要受控于该地区强烈的蒸发浓缩作用、萤石溶解作用、方解石—白云石沉淀作用、F-解吸作用等。萤石溶解是研究区地下水氟的主要天然来源,蒸发浓缩作用是研究区地下水氟富集的主要机制。

5.2 建议

1) 武清凹陷构造单元包含武清区应急供水水源地, 192眼浅层地下水人畜饮用水水井,供水的水质安全关系到80万人民的身体健康与社会稳定。因此,应对武清区浅层地下水进行分区规划治理与跟踪监测,对高氟区域的供水水井或及时关停或采取适当的降氟措施,避免对高氟水的直接饮用。

2) 农业灌溉方面需注意高氟水对土壤盐碱化、板结方面的影响,同时严禁混层开采,防止高氟水层对深层地下水的污染。

参考文献

国家质量监督检疫检验总局, 国家标准化管理委员会. GB/T14848—2017 地下水质量标准[S]. 北京: 标准出版社, 2017.

[本文引用: 1]

General Administration of Quality Supervision, Inspection and Quarantine,Standadization Administration. GB/T14848—2017 Standard for groundwater quality[S]. Beijing: Standards Press, 2017.

[本文引用: 1]

中华人民共和国卫生部, 国家标准化管理委员会. GB5749—2006 生活饮用水卫生标准[S]. 北京: 标准出版社, 2006.

[本文引用: 1]

Ministry of Health of the People's Republic of China,Standadization Administration. GB5749—2006 Standards for drinking water quality [S]. Beijing: Standards Press, 2017.

[本文引用: 1]

曾溅辉, 刘文生.

浅层高氟地下水元素的组分存在形式与地方性氟病之关系

[J]. 水文地质工程地质, 1995,22(1):25-28.

[本文引用: 1]

Zeng J H, Liu W S.

The mode of occurrence in shallow high fluorine groundwater and its relationship to endemic fluorosis

[J]. Hydrogeology and Engineering Geology, 1995,22(1):25-28.

[本文引用: 1]

Gomez M L, Blarasin M T, Martnez D E.

Arsenic and fluoride in a loess aquifer in the central area of Argentina

[J]. Environmental Geology, 2009,57:143-155.

DOI:10.1007/s00254-008-1290-4      URL     [本文引用: 1]

The objective of this study is to analyze the geochemical conditions associated with the presence of arsenic (As) and fluoride (F) in the phreatic aquifer of Coronel Moldes, in the central sector of the Argentine Chacopampean plain. The studied aquifer is composed of silty sand sediments of aeolian origin, typically loess-like sediments. The geochemical composition of water varies from sodium bicarbonate to sodium sulfate-chloride water. As contents range from low concentrations, below detection level, to 250 μg/l. High values of F (up to 12 mg/l) were recorded. A high As–F correlation was found (R 2 = 0.84). The pH varied from 7.31 to 8.85 and the nitrates reached concentrations up to 200 mg/l, indicating an oxidant environment. The highest values of As and F agreed with sodium bicarbonate waters as well as with the highest values of pH recorded. There was a high correlation between As and F− as well as between As and the Na/Ca ratio. The composition and texture of loess, low permeability and hydraulic gradients together with the geochemical features of sodium bicarbonate waters are proper conditions for the mobilization of As and F in groundwater in the central area of Argentina.]]>

Arveti N, Sarma M R S, Aitkenhead J A, et al.

Fluoride incidence in groundwater: A case study from Talupula, Andhra Pradesh

[J]. India Environmental Monitoring and Assessment, 2011,172:427-443.

URL     PMID:20140498      [本文引用: 1]

钱会, 马致远, 李培月. 水文地球化学[M]. 北京: 地质出版社, 2012.

[本文引用: 1]

Qian H, Ma Z Y, Li P Y. Hydrogeochemistry[M]. Beijing: Geological Publishing House, 2012.

[本文引用: 1]

汤洁, 卞建民, 李昭阳, .

松嫩平原氟中毒地区地下水氟分布规律和成因研究

[J]. 中国地质, 2010,37(1):615-620.

[本文引用: 1]

Tang J, Bian J M, Li Z Y, et al.

The distribution regularity and causes of luoride in groundwater of the fluorosis area, Songne Plain

[J]. Geology in China, 2010,37(3):615-620.

[本文引用: 1]

Dhiman S D, Keshari K.

Hydrogeochemical evaluation of high-fluoride ground waters:A case study from Mehsana District, Gujarat, India

[J]. Hydrological Sciences. 2006,51(6):1149-1162.

DOI:10.1623/hysj.51.6.1149      URL     [本文引用: 1]

Abida F, Harue M, Nousheen F.

Toxic fluoride and arsenic contaminated groundwater in the Lahore and Kasur districts, Punjab, Pakistan and possible contaminant sources

[J]. Environmental Pollution, 2006(7):1-11.

[本文引用: 1]

Robertson F N.

Solubity controls of fluorine, barium and chromium in groundwater in alluvial basins of Arizona

[J]. National Water Well Association, 1984: 96-102.

[本文引用: 1]

Gunnar J, Prosun B.

Controls on the genesis of some high-fluoride groundwaters in India

[J]. Applied Geochemistry, 2005(20):221-228.

DOI:10.1016/j.apgeochem.2004.07.002      URL     [本文引用: 1]

AbstractIndia has an increasing incidence of fluorosis, dental and skeletal, with some 62 million people at risk. High fluoride groundwaters are present especially in the hard rock areas south of the Ganges valley and in the arid north-western part of the country. The phenomenon is related to groundwater with residual alkalinity . Fluoride concentrations are governed by adsorption equilibria and by fluorite solubility. Evapotranspiration leads to a precipitation of calcite, a lowering of Ca activity and increase in Na/Ca ratios, and this allows an increase in F− levels. In southern India, Mg seems to be controlled by dolomite, while sepiolite and palygorskite are Mg sinks in Rajasthan but may then release F− under alkaline conditions. The latter two minerals are probably also important sources and sinks for F− in the hydroxy-positions. The increase in the extent of sodic soils as a result of irrigation is a contributing factor to the increasing incidence of fluorosis. Remedial measures including addition of gypsum and rainwater harvesting are needed even in areas where the sodicity does not cause structural problems in the soil.]]>

曾溅辉, 刘文生, 彭玉荣.

浅层地下水氟的质量平衡反应模型及其化学演变

[J]. 水文地质工程地质, 1995,22(5):12-16.

[本文引用: 1]

Zeng J H, Liu W S, Peng Y R.

The mass balance reaction models for fluorine in shallow groundwater and its chemical evolution

[J]. Hydrogeology and Engineering Geology, 1995,22(5):12-16.

[本文引用: 1]

许光泉, 刘进, 朱其顺, .

安徽淮北平原浅层地下水中氟的分布特征及影响因素分析

[J]. 水资源与水工程学报, 2009,20(5):9-13.

[本文引用: 1]

Xu G Q, Liu J,

Zhu Q S,etc.Analysis of distribution characteristics and influencing factors for the fluorine in the shallow groundwater in Huaibei Plain of Anhui

[J]. Journal of Water Resources and Water Engineering, 2009,20(5):9-13.

[本文引用: 1]

李俊霞, 苏春利, 谢先军, .

多元统计方法在地下水环境研究中的应用——以山西大同盆地为例

[J]. 地质科技情报, 2010,29(6):94-100.

[本文引用: 1]

Li J X, Su C L, Xie X J, et al.

Application of multivariate statistical analysis to research the environment of groundwater:A case study at Datong Basin,Northern China

[J]. Geological Science and Technology Information, 2010,29(6):94-100.

[本文引用: 1]

沈照理, 朱宛华, 钟佐燊. 水文地球化学基础[M]. 北京: 地质出版社, 1993.

[本文引用: 1]

Shen Z L, Zhu W H, Zhong Z S. Hydrogeochemical foundation[M]. Beijing: Geological Publishing House, 1993.

[本文引用: 1]

Gibbs R J.

Mechanisms controlling world water chemistry

[J]. Science, 1970,170:1088-1090.

DOI:10.1126/science.170.3962.1088      URL     PMID:17777828      [本文引用: 1]

On the basis of analytical chemical data for numerous rain, river, lake, and ocean samples, the three major mechanisms controlling world surface water chemistry can be defined as atmospheric precipitation, rock dominance, and the evaporation-crystallization process.

Handa B K.

Geochemistry and genesis of fluoride containing ground waters in India

[J]. Ground Water, 1975,13(3):275-281.

DOI:10.1111/gwat.1975.13.issue-3      URL     [本文引用: 1]

毛若愚, 郭华明, 贾永锋, .

内蒙古河套盆地含氟地下水分布特点及成因

[J]. 地学前缘, 2016,23(2):260-267.

[本文引用: 2]

Mao R Y, Guo H M, Jia Y F, et al.

Distribution characteristics and genesis of fluoride groundwater in the Hetao basin, Inner Mongolia

[J]. Earth Science Frontiers, 2016,23(2):260-268.

[本文引用: 2]

邢丽娜.

华北平原典型剖面上地下水化学特征和水文地球化学过程

[D]. 北京:中国地质大学(北京), 2012.

[本文引用: 1]

Xing L N.

Groundwater hydrochemical characteristics and hydrogeochemical processes approximately along flow paths in the North China Plain

[D]. Beijing:China University of Geosciences(Beijing), 2012.

[本文引用: 1]

Karthikeyan M, Satheesh K K K, Elango K P.

Conducting polymer/alumina composites as viable absorbents for the removal of fluoride ions from aqueous solution

[J]. Journal of Fluorine Chemistry, 2009,130:894-901.

DOI:10.1016/j.jfluchem.2009.06.024      URL     [本文引用: 1]

Su C M, Plus R W.

Asrenate and arsenite removal by zerovalent iron: Effects of phosphate, and nitrate, relative to chloride

[J]. Environmental Science and Technology, 2001,35(22):4562-4568.

URL     PMID:11757617      [本文引用: 1]

/

京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com