Please wait a minute...
E-mail Alert Rss
 
物探与化探  2024, Vol. 48 Issue (2): 508-513    DOI: 10.11720/wtyht.2024.1170
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
基于EMD和KL变换的时空联合探地雷达杂波抑制
邵泉杰(), 孙灵芝
青岛民航凯亚系统集成有限公司,山东 青岛 266000
Spatio-temporal combined ground-penetrating radar clutter suppression based on empirical mode decomposition and Karhunen-Loeve transform
SHAO Quan-Jie(), SUN Ling-Zhi
Qingdao Civil Aviation Cares Co.,Ltd.,Qingdao 266000,China
全文: PDF(2443 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

探地雷达接收信号中由于环境等原因存在多种杂波干扰,这给地下异常解释与后期成像处理造成很大障碍。杂波主要包括噪声、天线耦合波、地表直达波等,单一的处理方式很难将其有效去除。针对此问题,提出从时间和空间两方面对杂波进行抑制的方法。时间维针对回波剖面中每个测点的数据进行经验模态分解阈值处理,达到对噪声的有效去除。空间维针对整个雷达回波剖面,利用各测点目标回波具有相关性而杂波等随机产生的特点,进行KL变换去除残余干扰。理论仿真及实测数据处理结果均验证了该方法对去杂波以及突出弱信号是有效的。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邵泉杰
孙灵芝
关键词 探地雷达杂波抑制经验模态分解阈值处理KL变换    
Abstract

Due to factors such as environment,the signals received by ground-penetrating radar (GPR) contain various clutter interference,posing high challenges in subsurface anomaly interpretation and late-stage imaging.Clutter,primarily including noise,antenna-coupled waves,and surface direct waves,cannot be eliminated effectively using single data processing methods.Hence,this study proposed a spatiotemporal combined clutter suppression method. In the temporal dimension,threshold processing based on empirical mode decomposition(EMD) was applied to the data of all survey points in the echo profile,achieving effective noise removal.In the spatial dimension,the Karhunen-Loeve(KL) transform was employed to remove residual interference in the entire radar echo profile by utilizing the correlation of target echoes and the randomness of clutter at all survey points.Both theoretical simulation and measured data processing verify that the method proposed in this study is effective in eliminating clutter and highlighting weak signals.

Key wordsground penetrating radar    clutter suppression    empirical mode decomposition    threshold processing    KL transform
收稿日期: 2023-05-05      修回日期: 2024-01-15      出版日期: 2024-04-20
ZTFLH:  TN957.52  
基金资助:国家自然科学基金项目(61371186)
作者简介: 邵泉杰(1989-),男,2015年毕业于桂林电子科技大学,主要从事探地雷达信号处理研究工作。Email:kjieshen@163.com
引用本文:   
邵泉杰, 孙灵芝. 基于EMD和KL变换的时空联合探地雷达杂波抑制[J]. 物探与化探, 2024, 48(2): 508-513.
SHAO Quan-Jie, SUN Ling-Zhi. Spatio-temporal combined ground-penetrating radar clutter suppression based on empirical mode decomposition and Karhunen-Loeve transform. Geophysical and Geochemical Exploration, 2024, 48(2): 508-513.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2024.1170      或      https://www.wutanyuhuatan.com/CN/Y2024/V48/I2/508
Fig.1  探地雷达接收信号模型
Fig.2  原始探地雷达信号(a)及加噪处理后信号(b)
Fig.3  EMD分解后的IMF1~IMF8
Fig.4  EMD改进阈值去噪(a)与小波去噪(b)对比
SNR RMSE
加噪信号 10.058 0.0099
小波阈值去噪 18.9591 0.0036
EMD阈值去噪 20.1949 0.0031
Table 1  信噪比与均方根误差对比
Fig.5  实测场景及数据处理
a—实测场景;b—实测采集回波数据;c—EMD改进阈值去噪;d—小波去噪
Fig.6  原始数据及数据处理结果
a—原始数据;b—去除直达波数据;c—EMD改进阈值去噪;d—时空二维杂波压制
去直达波 EMD阈值 KL变换
Q 2090 1553 1099
Table 2  图像熵值对比
[1] 申家全, 闫怀志, 胡昌振. 基于图像熵的探地雷达杂波抑制效果评价[J]. 电波科学学报, 2011, 26(2):267-271,413.
[1] Shen J Q, Yan H Z, Hu C Z. Evaluation method based on image entropy for clutter suppression effect of ground-penetrating radar[J]. Chinese Journal of Radio Science, 2011, 26(2):267-271,413.
[2] 石显新, 杨秋芬, 侯彦威. 二维物理小波标架去除探地雷达信号随机噪声[J]. 电波科学学报, 2012, 27(6):1186-1192,1268.
[2] Shi X X, Yang Q F, Hou Y W. Eliminating random noise interference of ground penetrating radar signal by resorting to 2-D physical wavelet fame[J]. Chinese Journal of Radio Science, 2012, 27(6):1186-1192,1268.
[3] 吴宝杰, 杨桦, 张伟光. 探地雷达数据的S变换时频分析[J]. 上海地质, 2008, 107(3):13-15,19.
[3] Wu B J, Yang H, Zhang W G. S transform time-frequency analysis of GPR data[J]. Shanghai Geology, 2008, 107(3):13-15,19.
[4] Huang N E, Wu M L C, Long S R, et al. A confidence limit for the empirical mode decomposition and Hilbert spectral analysis[J]. Proceedings of the Royal Society of London Series A:Mathematical,Physical and Engineering Sciences,2003, 459(2037):2317-2345.
[5] Flandrin P, Rilling G, Goncalves P. Empirical mode decomposition as a filter bank[J]. IEEE Signal Processing Letters, 2004, 11(2):112-114.
doi: 10.1109/LSP.2003.821662
[6] 易洪春, 刘树才, 贺克升, 等. 基于 EMD 去噪方法研究及其在地质勘探中的应用[J]. 物探与化探, 2013, 37(3):533-537.
[6] Yi H C, Liu S C, He K S, et al. Data denoising based on EMD and its ap-plication to geological exploration[J]. Geophysical and Geochemical Explora-tion, 2013, 37(3):533-537.
[7] 冯德山, 戴前伟, 余凯. 基于经验模态分解的低信噪比探地雷达数据处理[J]. 中南大学学报:自然科学版, 2012, 43(2):596-604.
[7] Feng D S, Dai Q W, Yu K. GPR signal processing under low SNR based on empirical mode decomposition[J]. Journal of Central South University:Science and Technology, 2012, 43(2):596-604.
[8] Tesfamariam, Gebremichael T, Mali D, et al. Clutter reduction techniques for GPR based buried landmine detection[C]// Thuckalay:2011 International Conference on Signal Processing,Communication,Computing and Networking Technologies.IEEE, 2011:182-186.
[9] Khan U S, Al-Nuaimy W. Background removal from GPR data using Eigenvalues[C]// Lecce: Proceedings of the XIII Internarional Conference on Ground Penetrating Radar.IEEE, 2010:1-5.
[10] 申家全, 闫怀志, 胡昌振. 基于主成分自动选择准则的探地雷达杂波抑制[J]. 电波科学学报, 2010, 25(1):83-87.
[10] Shen J Q, Yan H Z, Hu C Z. Auto-selected rule on principal component analysis in ground penetrating radar signal denoising[J]. Chinese Journal of Radio Science, 2010, 25(1):83-87.
[11] Solimene R, Cuccaro A, Dell’Aversano A, et al. Ground clutter removal in GPR surveys[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(3):792-798.
doi: 10.1109/JSTARS.4609443
[12] Wu Z H, Huang N E. A study of the characteristics of white noise using the empirical mode decomposition method[J]. Proceedings of the Royal Society of London Series A:Mathematical,Physical and Engineering Sciences,2004, 460(2046):1597-1611.
[13] Donoho D L. De-noising by soft-thresholding[J]. IEEE Transactions on Information Theory, 1995, 41(3):613-627.
doi: 10.1109/18.382009
[14] 杨天春, 张辉, 李好. 探地雷达信号的 KL 变换处理分析[J]. 湖南科技大学学报:自然科学版, 2013, 28(2):66-69.
[14] Yang T C, Zhang H, Li H. Signal processing of ground penetrating radar by KL transform[J]. Journal of Hunan University of Science & Technology:Natural Science Edition, 2013, 28(2):66-69.
[1] 尹达, 辛国亮, 孙学超, 张友源, 张其道. 实时三维探地雷达关键技术的设计与实现[J]. 物探与化探, 2024, 48(1): 194-200.
[2] 席宇何, 王洪华, 王欲成, 吴祺铭. 基于速度移动窗的最小熵法在GPR逆时偏移中的应用[J]. 物探与化探, 2023, 47(5): 1250-1260.
[3] 吴嵩, 宁晓斌, 杨庭伟, 姜洪亮, 卢超波, 苏煜堤. 基于神经网络的探地雷达数据去噪[J]. 物探与化探, 2023, 47(5): 1298-1306.
[4] 曾波, 刘硕, 杨军, 冯德山, 袁忠明, 柳杰, 王珣. 地表起伏对地下管线GPR探测的影响[J]. 物探与化探, 2023, 47(4): 1064-1070.
[5] 王欲成, 王洪华, 苏鹏锦, 龚俊波, 席宇何. 地下供水管线渗漏的探地雷达模拟探测试验分析[J]. 物探与化探, 2023, 47(3): 794-803.
[6] 徐立, 冯温雅, 姜彦南, 王娇, 朱四新, 覃紫馨, 李沁璘, 张世田. 基于行列方差方法的探地雷达道路数据感兴趣区域自动提取技术[J]. 物探与化探, 2023, 47(3): 804-809.
[7] 冯温雅, 程丹丹, 王成浩, 程星. 基于探地雷达等效采样的时变零偏实时校正方法[J]. 物探与化探, 2023, 47(2): 372-376.
[8] 王宗仁, 文畅, 谢凯, 盛冠群, 贺建飚. 多尺度时频空三域特征联合下的储层岩性识别方法[J]. 物探与化探, 2023, 47(1): 81-90.
[9] 周东, 刘毛毛, 刘宗辉, 刘保东. 基于瞬时相位余弦的探地雷达多层路面自动检测[J]. 物探与化探, 2022, 46(4): 961-967.
[10] 张豪, 辛勇光, 田瀚. 基于双相介质理论预测川西北地区雷口坡组储层含气性[J]. 物探与化探, 2021, 45(6): 1386-1393.
[11] 张斯薇, 吴荣新, 韩子傲, 吴海波. 双边滤波在探地雷达数据去噪处理中的应用[J]. 物探与化探, 2021, 45(2): 496-501.
[12] 蔡连初, 缪念有. 探地雷达宽角反射图形拟合方法[J]. 物探与化探, 2021, 45(1): 239-244.
[13] 韩佳明, 仲鑫, 景帅, 刘平. 探地雷达在黄土地区城市地质管线探测中的应用[J]. 物探与化探, 2020, 44(6): 1476-1481.
[14] 李靖翔, 赵明, 赖皓, 熊双成, 唐阳. 地下电缆的探地雷达图像特征与识别技术[J]. 物探与化探, 2020, 44(6): 1482-1489.
[15] 王静波, 熊盛青, 罗锋, 王冠鑫. 航空重力测量数据的小波滤波处理[J]. 物探与化探, 2020, 44(2): 300-312.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com