Please wait a minute...
E-mail Alert Rss
 
物探与化探  2024, Vol. 48 Issue (6): 1553-1558    DOI: 10.11720/wtyht.2024.0040
  “高放废物处置”专栏 本期目录 | 过刊浏览 | 高级检索 |
处置单元与导水裂隙的安全避让距离研究
凌辉1,2(), 李亚伟1,2, 陈伟明1,2
1.核工业北京地质研究院,北京 100029
2.国家原子能机构高放废物地质处置创新中心,北京 100029
Study on avoidance distance between deposition hole and water conducting fracture
LING Hui1,2(), LI Ya-Wei1,2, CHEN Wei-Ming1,2
1. Beijing Research Institute of Uranium Geology,Beijing 100029,China
2. CAEA Innovation Center for Geological Disposal of High-level Radioactive Waste,Beijing 100029,China
全文: PDF(1811 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

界定处置单元与导水裂隙的安全避让距离是评价高放废物处置库场址适宜性的重要基础,也是设计高放废物处置库的关键内容之一。本文以北山地下实验室所在的新场场址作为高放废物处置库的参考场址,采用国际通用的安全评价软件GoldSim,建立了处置库关闭后放射性核素迁移的计算模型,并利用蒙特卡罗随机模拟方法初步分析了处置单元与完整围岩中导水裂隙的安全避让距离。 结果表明,在现有场址认识条件下(研究区80%的花岗岩岩体渗透系数小于1.0×10-9 m/s),当导水裂隙渗透系数设为1.0×10-6 m/s时,其与处置单元的安全避让距离不大于0.5 m;场址花岗岩围岩渗透系数越小,对应的安全避让距离相应越小。处置单元对导水裂隙安全避让距离的研究结果可为高放废物处置库选址及其设计提供参考。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
凌辉
李亚伟
陈伟明
关键词 花岗岩处置单元导水裂隙模拟安全避让距离    
Abstract

The definition of avoidance distance between deposition hole and water conducting fracture is an important basis for evaluating the site suitability of the high-level waste disposal repository,and it is also one of the key contents of the design of high-level waste disposal repository. In this paper, the site of the Beishan underground research laboratory is taken as the reference site for geological disposal of high-level radioactive waste. This paper established a computational model for the release and migration of radionuclides after closure of repository by GoldSim. Then, the avoidance distance between deposition hole and water conducting fracture in intact rock was analyzed by the method of Monte Carlo stochastic simulation. The results show that a 80% hydraulic conductivity value of the granite in the study area is less than 1.0×10-9 m/s under the existing conditions, and when the hydraulic conductivity value of water conduction fracture is set to 1.0×10-6 m/s, the corresponding avoidance distance is less than 0.5 m. The smaller the permeability coefficient is, the smaller the corresponding safety avoidance distance is. The analysis of the results shows that the avoidance distance between the deposition hole and water conducting fracture can provide a feedback guidance for the site selection and design of the disposal repository.

Key wordsgranite    deposition hole    water conducting fracture    simulation    avoidance distance
收稿日期: 2024-01-28      修回日期: 2024-08-27      出版日期: 2024-12-20
ZTFLH:  P641  
基金资助:国防科工局核设施退役与放射性废物治理专项(科工二司[2020]194号)
引用本文:   
凌辉, 李亚伟, 陈伟明. 处置单元与导水裂隙的安全避让距离研究[J]. 物探与化探, 2024, 48(6): 1553-1558.
LING Hui, LI Ya-Wei, CHEN Wei-Ming. Study on avoidance distance between deposition hole and water conducting fracture. Geophysical and Geochemical Exploration, 2024, 48(6): 1553-1558.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2024.0040      或      https://www.wutanyuhuatan.com/CN/Y2024/V48/I6/1553
Fig.1  研究区完整围岩200~600 m段渗透系数分布
Fig.2  处置单元对导水裂隙的安全避让距离示意
Fig.3  正常演变情景下核素释放迁移路径示意
国家 处置废物 处置围岩 剂量约束值/(mSv·a-1)
瑞典 乏燃料 花岗岩 0.014
芬兰 乏燃料 花岗岩 0.1
加拿大 乏燃料 花岗岩 0.3
日本 玻璃固化体 花岗岩 0.01
Table 1  以花岗岩为主岩国家的评价指标汇总
Fig.4  个人年有效剂量随完整围岩厚度变化的敏感性分析示意
Fig.5  个人年有效剂量随完整围岩厚度变化示意
渗透系数
累积概率
剂量约束值0.01 mSv/a时
安全避让距离/m
剂量约束值0.25 mSv/a时
安全避让距离/m
95% ≥7.96 ≥1.62
80% ≥0.41 ≥0.21
50% ≥0.12 ≥0.12
Table 2  完整围岩不同渗透系数条件下处置单元对导水裂隙的安全避让距离对比
[1] 王驹, 凌辉, 陈伟明. 高放废物地质处置库安全特性研究[J]. 中国核电, 2017, 10(2):270-278.
[1] Wang J, Ling H, Chen W M. Study on the safety functions of repository for geological disposal of high level radioactive waste[J]. China Nuclear Power, 2017, 10(2):270-278.
[2] Wang J, Chen L, Su R, et al. The Beishan underground research laboratory for geological disposal of high-level radioactive waste in China:Planning,site selection,site characterization and in situ tests[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2018, 10(3):411-435.
[3] SKB. Long-term safety for the final repository for spent nuclear fuel at forsmark,main report of the SR-Site project,SKB report TR-11-01[R]. Stockholm: Svensk Kärnbränslehantering AB, 2011.
[4] POSIVA. Safety case for the disposal of spent nuclear fuel at Olkiluoto-Synhesis 2012,POSIVA 2012-12[R]. Eurajoki,Finland:Posiva Oy, 2012.
[5] NWMO. Post-closure safety assessment of a used fuel repository in crystalline rock[R]. Canada:Toronto, 2012.
[6] Technology Management Division. H12:Project to establish the scientific and technical basis for HLW disposal in Japan,Supporting Report 3:Safety assessment of the geological disposal system[R]. Ibraki: Japan Nuclear Cycle Development Institute, 2000:V19-V92.
[7] 中华人民共和国住房和城乡建设部. GB/T 50218—2014工程岩体分级标准[S]. 北京: 中国计划出版社, 2015.
[7] Ministry of Housing and Urban-Rural Development of the People’s Republic of China. GB/T 50218—2014 Standard for engineering classification of rock mass[S]. Beijing: China Planning Press, 2015.
[8] 王驹, 苏锐, 陈亮, 等. 中国高放废物地质处置地下实验室场址筛选[J]. 世界核地质科学, 2022, 39(1):1-13.
[8] Wang J, Su R, Chen L, et al. Site selection of underground research laboratory for geological disposal of high-level radioactive waste in China[J]. World Nuclear Geoscience, 2022, 39(1):1-13.
[9] 季瑞利, 张明, 周志超, 等. 北山预选区钻孔水文地质试验方法研究[J]. 铀矿地质, 2018, 34(1):53-59.
[9] Ji R L, Zhang M, Zhou Z C, et al. Research on in situ hydraulic test method in Beishan pre-selected area[J]. Uranium Geology, 2018, 34(1):53-59.
[10] EPRI. Evaluation of the proposed high-level radioactive waste repository at Yucca Mountain using total system performance assessment,Phase 6,Technical Report 1003031[R]. California:Electric Power Research Institute,Palo Alto, 2002.
[11] 刘月妙, 王驹, 曹胜飞, 等. 中国高放废物地质处置缓冲材料大型试验台架和热—水—力—化学耦合性能研究[J]. 岩土力学, 2013, 34(10):2756-2762,2789.
[11] Liu Y M, Wang J, Cao S F, et al. A large-scale THMC experiment of buffer material for geological disposal of high level radioactive waste in China[J]. Rock and Soil Mechanics, 2013, 34(10):2756-2762,2789.
[12] 陈伟明. 高放废物地质处置库系统分析方法研究——以甘肃北山预选区花岗岩场址为例[D]. 北京: 核工业北京地质研究院, 2008.
[12] Chen W M. Study on systematic analysis method of geological disposal repository of high level radioactive waste—A case study of granite site in Beishan pre-selection area of Gansu Province[D]. Beijing: Beijing Research Institute of Uranium Geology, 2008.
[13] IAEA. Reference biospheres for solid radioactive waste disposal,International Atomic Energy Agency,IAEA-BIOMASS-6[R]. Vienna:IAEA, 2003.
[1] 罗辉, 陈伟明, 李亚伟, 田霄, 张竞嘉. 沙枣园地段深部地质环境特征研究[J]. 物探与化探, 2024, 48(6): 1568-1576.
[2] 云龙, 陈苏, 傅磊, 庄海洋, 王驹. 高放废物北山地下实验室硐室群地震动反应特征研究[J]. 物探与化探, 2024, 48(6): 1519-1529.
[3] 张海洋, 刘飞杨, 刘健. 多场耦合条件下含裂隙北山花岗岩蠕变特性研究[J]. 物探与化探, 2024, 48(6): 1539-1544.
[4] 常江浩, 薛俊杰, 孟庆鑫, 赵鹏. 煤矿富水体SOTEM响应三维数值模拟研究[J]. 物探与化探, 2024, 48(5): 1176-1184.
[5] 贾波, 张富明, 张利军, 刘皓皓, 郭亮亮, 宋伟, 张朝阳, 何海龙, 王刚. 巷道电性源瞬变电磁响应三维数值模拟[J]. 物探与化探, 2024, 48(5): 1185-1192.
[6] 杨浪邕航, 李红星. 浅地表环境下ESPAC微动成像方法影响因素分析[J]. 物探与化探, 2024, 48(5): 1322-1330.
[7] 刘童, 孙成禹, 蔡瑞乾. 地震面波和P—导波正演模拟与波场分析[J]. 物探与化探, 2024, 48(4): 986-995.
[8] 刘洪华, 张卉, 王汝杰, 于鹏, 秦升强, 李文宇, 车荣祺. 滨海城市地质结构电阻率法三维模拟与应用[J]. 物探与化探, 2024, 48(4): 1037-1044.
[9] 张军, 陶耐, 齐尚星, 王志强, 笪昊翔. 皖南伏岭岩体岩石成因及对铷富集的指示[J]. 物探与化探, 2024, 48(3): 584-596.
[10] 杜惟一, 张冲, 韩华洋, 赵腾腾, 张文艺. 潜山花岗岩裂缝性储层阵列声波测井数值模拟研究[J]. 物探与化探, 2024, 48(2): 514-520.
[11] 赵自豪, 李鹏慧, 吕海建, 康森. 露天矿台阶对高密度电法勘探影响的实验研究[J]. 物探与化探, 2024, 48(2): 565-572.
[12] 张奎涛, 廖家荣, 顾汉明, 孙瑛莹, 陈怿旸, 王凯. 基于伪解析法的TTI介质纯qP波地震波场正演模拟[J]. 物探与化探, 2024, 48(1): 125-133.
[13] 黄瑶. 基于三维电阻率法的水电工程隧道地质条件探查[J]. 物探与化探, 2024, 48(1): 281-286.
[14] 张雪昂, 杨志超, 李小燕, 董丽媛. 多孔隙度变化倾角裂缝型砂岩铀矿超热中子运移模拟[J]. 物探与化探, 2023, 47(6): 1547-1554.
[15] 王欲成, 王洪华, 苏鹏锦, 龚俊波, 席宇何. 地下供水管线渗漏的探地雷达模拟探测试验分析[J]. 物探与化探, 2023, 47(3): 794-803.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com