Please wait a minute...
E-mail Alert Rss
 
物探与化探  2024, Vol. 48 Issue (6): 1539-1544    DOI: 10.11720/wtyht.2024.1557
  “高放废物处置”专栏 本期目录 | 过刊浏览 | 高级检索 |
多场耦合条件下含裂隙北山花岗岩蠕变特性研究
张海洋1,2(), 刘飞杨1,2, 刘健1,2
1.核工业北京地质研究院,北京 100029
2.国家原子能机构高放废物地质处置创新中心,北京 100029
Creep characteristics of fractured Beishan granite under the condition of multi-field coupling
ZHANG Hai-Yang1,2(), LIU Fei-Yang1,2, LIU Jian1,2
1. Beijing Research Institute of Uranium Geology, Beijing 100029, China
2. CAEA Innovation Center for Geological Disposal of High-Level Radioactive Waste,Beijing 100029, China
全文: PDF(2483 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

高放废物处置库运行后,近场围岩将长期处于热—水—力耦合环境中,其力学及渗透特性对处置库性能评价至关重要。我国高放处置库北山预选区围岩是典型的稀疏裂隙花岗岩体,含裂隙花岗岩的蠕变特性直接关系着处置库的长期安全性能。为此,首先通过水射流和线切割技术、裂隙表面封堵和岩样端部组合密封,解决了热—水—力耦合三轴试验中含裂隙花岗岩样品的制备和密封难题。在此基础上,开展了分级加载三轴蠕变试验。试验结果表明:在多场耦合条件下,含裂隙花岗岩三轴蠕变强度约为三轴强度的80%,蠕变变形随轴向荷载水平的升高而增大,且横向蠕变比轴向蠕变更明显;对应岩样的压密段和裂纹扩展段,轴向应变率和渗透率均呈现先减小后增大的趋势;渗透压差相等时,裂隙内部较大的渗透水压会导致岩样峰值强度降低,并产生更大的横向蠕变变形。该成果为处置库选址和围岩评价、处置库工程设计和建设提供了科学保障。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张海洋
刘飞杨
刘健
关键词 含裂隙花岗岩蠕变热—水—力耦合力学特性渗透率    
Abstract

After a disposal repository for high-level radioactive waste operates, the near-field surrounding rocks will be long in a thermal-hydrological-mechanical coupling environment. Therefore, their mechanical and permeability characteristics are crucial to the performance evaluation of the disposal repository. The surrounding rocks of the Beishan preselected area for the disposal of high-level radioactive waste in China are typical sparsely fractured granites, whose creep characteristics are directly related to the long-term safety of the disposal repository. Using water jet and wire cutting techniques, along with fracture surface blocking and combined sealing at rock sample ends, this study addressed the challenges of the sample preparation and sealing of fractured granite in thermal-hydrological-mechanical coupling triaxial tests. Based on this, multi-loading triaxial creep tests were conducted. The test results indicate that under the condition of multi-field coupling, the triaxial creep strength of the fractured granite was approximately 80% of its triaxial strength. Creep deformation increased with the axial load level, with lateral creeps more pronounced than axial creeps. For the compacted and crack propagation sections of the rock samples, both the axial strain rate and permeability decreased initially and then increased. In the case of consistent osmotic pressure difference, a higher osmotic water pressure within fractures would lead to decreased peak strength of the rock samples and result in greater lateral creep deformation.The results provide scientific support for the site selection, surrounding rock evaluation, engineering design and construction of the repository.

Key wordsfractured granite    creep    thermal-hydrological-mechanical coupling    mechanical property    permeability
收稿日期: 2023-12-20      修回日期: 2024-02-27      出版日期: 2024-12-20
ZTFLH:  TU43  
基金资助:国家原子能机构高放废物地质处置创新中心基金项目(CXJJ21102204);国防科工局核设施退役及放射性废物治理科研项目(科工二司[2020]194号)
引用本文:   
张海洋, 刘飞杨, 刘健. 多场耦合条件下含裂隙北山花岗岩蠕变特性研究[J]. 物探与化探, 2024, 48(6): 1539-1544.
ZHANG Hai-Yang, LIU Fei-Yang, LIU Jian. Creep characteristics of fractured Beishan granite under the condition of multi-field coupling. Geophysical and Geochemical Exploration, 2024, 48(6): 1539-1544.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2024.1557      或      https://www.wutanyuhuatan.com/CN/Y2024/V48/I6/1539
Fig.1  含裂缝岩石试样示意
Fig.2  含裂隙花岗岩三轴蠕变试验密封及安装
Fig.3  不同测试渗透水压下热—水—力耦合三轴蠕变试验应力应变与时间关系曲线
Fig.4  不同渗透水压下轴向偏应力及应变与时间关系曲对比
Fig.5  不同渗透水压下各级加载水平的轴向应变率
Fig.6  不同渗透水压下岩样渗透率变化趋势对比
[1] Rutqvist J, Freifeld B, Min K B, et al. Analysis of thermally induced changes in fractured rock permeability during 8 years of heating and cooling at the Yucca Mountain Drift Scale Test[J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(8):1373-1389.
[2] Souley M, Homand F, Pepa S, et al. Damage-induced permeability changes in granite:A case example at the URL in Canada[J]. International Journal of Rock Mechanics and Mining Sciences, 2001, 38(2):297-310.
[3] 欧阳蕊灿, 王卫军, 袁超. 考虑孔隙水压的岩体蠕变本构模型[J]. 矿业工程研究, 2022, 37(2):1-8.
[3] Ouyang R C, Wang W J, Yuan C. On constitutive model of rock mass creep considering pore water pressure[J]. Mineral Engineering Research, 2022, 37(2):1-8.
[4] 杨红伟, 许江, 聂闻, 等. 渗流水压力分级加载岩石蠕变特性研究[J]. 岩土工程学报, 2015, 37(9):1613-1619.
[4] Yang H W, Xu J, Nie W, et al. Experimental study on creep of rocks under step loading of seepage pressure[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9):1613-1619.
[5] 蒋海飞, 刘东燕, 黄伟, 等. 高围压下高孔隙水压对岩石蠕变特性的影响[J]. 煤炭学报, 2014, 39(7):1248-1256.
[5] Jiang H F, Liu D Y, Huang W, et al. Influence of high pore water pressure on creep properties of rock under high confining pressure[J]. Journal of China Coal Society, 2014, 39(7):1248-1256.
[6] 刘德峰, 刘鹏涛, 张臻悦, 等. 轴压水压耦合作用下裂隙砂岩蠕变特性[J]. 工程科学与技术, 2021, 53(1):94-103.
[6] Liu D F, Liu P T, Zhang Z Y, et al. Creep characteristics of fractured sandstone under the coupling action of axial compression and hydraulic pressure[J]. Advanced Engineering Sciences, 2021, 53(1):94-103.
[7] 陈英, 谢辉, 杨俊, 等. 真实水压作用下裂隙大理岩蠕变特性试验研究[J]. 工程科学与技术, 2021, 53(4):149-157.
[7] Chen Y, Xie H, Yang J, et al. Experimental study on creep properties of fractured marble under water pressure[J]. Advanced Engineering Sciences, 2021, 53(4):149-157.
[8] 郭保华, 田采霞. 岩石裂隙的法向蠕变及渗流的影响[J]. 河南理工大学学报:自然科学版, 2012, 31(4):403-408.
[8] Guo B H, Tian C X. Normal creep deformation law of rock fracture and the influence of seepage[J]. Journal of Henan Polytechnic University:Natural Science Edition, 2012, 31(4):403-408.
[9] 王辰霖, 郭保华. 大理岩裂隙渗流的时间效应试验研究[J]. 地下空间与工程学报, 2018, 14(6):1498-1504.
[9] Wang C L, Guo B H. Experimental study on time effect of seepage properties of marble fracture[J]. Chinese Journal of Underground Space and Engineering, 2018, 14(6):1498-1504.
[10] Park S, Kim J S, Kim G Y, et al. Evaluation of mechanical properties of KURT granite under simulated coupled condition of a geological repository[J]. Journal of Korean Tunnelling and Underground Space Association, 2019, 21(4):501-518.
[11] Yang S Q, Xu P, Li Y B, et al. Experimental investigation on triaxial mechanical and permeability behavior of sandstone after exposure to different high temperature treatments[J]. Geothermics, 2017, 69:93-109.
[12] Yang S Q, Hu B, Tian W L. Effect of high temperature damage on triaxial mechanical failure behavior of sandstone specimens containing a single fissure[J]. Engineering Fracture Mechanics, 2020, 233:107066.
[13] 江宗斌. 多场环境作用岩石蠕变特性试验及力学模型研究[D]. 大连: 大连海事大学, 2016.
[13] Jiang Z B. Creep characteristics test and mechanical model study of rock under multi-field environmental action[D]. Dalian: Dalian Maritime University, 2016.
[14] 张培森, 赵成业, 侯季群, 等. 温度—应力—渗流耦合条件下红砂岩渗流特性试验研究[J]. 岩石力学与工程学报, 2020, 39(10):1957-1974.
[14] Zhang P S, Zhao C Y, Hou J Q, et al. Experimental study on seepage characteristics of deep sandstone under temperature-stress-seepage coupling conditions[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(10):1957-1974.
[15] Meng L B, Li T B, Xu J, et al. Deformation and failure mechanism of phyllite under the effects of THM coupling and unloading[J]. Journal of Mountain Science, 2012, 9(6):788-797.
[16] 胡波, 杨圣奇, 徐鹏, 等. 单裂隙砂岩蠕变模型参数时间尺度效应及颗粒流数值模拟研究[J]. 岩土工程学报, 2019, 41(5):864-873.
[16] Hu B, Yang S Q, Xu P, et al. Time-scale effect of the creep model parameters and particle flow simulation of sandstone with a single crack[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(5):864-873.
[17] 秦楠, 张作良, 冯学志, 等. 蠕变作用后裂隙类岩石单轴强度和裂纹扩展规律研究[J]. 煤炭科学技术, 2020, 48(12):244-249.
[17] Qin N, Zhang Z L, Feng X Z, et al. Study on uniaxial strength and crack propagation law of cracked similar rock after creep[J]. Coal Science and Technology, 2020, 48(12):244-249.
[18] 梁冰, 张涛, 王俊光, 等. 裂隙辉绿岩蠕变试验及模型研究[J]. 实验力学, 2019, 34(2):351-357.
[18] Liang B, Zhang T, Wang J G, et al. Creep experimental study and model improvement of fissured diabase[J]. Journal of Experimental Mechanics, 2019, 34(2):351-357.
[19] 张国朋. 岩石通透裂隙扩展机理及其蠕变特性研究[D]. 青岛: 山东科技大学, 2018.
[19] Zhang G P. Study on cracks propagation mechanism and creep properties of fractured rock[D]. Qingdao: Shandong University of Science and Technology, 2018.
[20] 蒋海飞, 刘东燕, 赵宝云, 等. 高围压高水压条件下岩石非线性蠕变本构模型[J]. 采矿与安全工程学报, 2014, 31(2):284-291.
[20] Jiang H F, Liu D Y, Zhao B Y, et al. Nonlinear creep constitutive model of rock under high confining pressure and high water pressure[J]. Journal of Mining & Safety Engineering, 2014, 31(2):284-291.
[1] 石磊, 管耀, 冯进, 高慧, 邱欣卫, 阙晓铭. 基于多级次流动单元的砂砾岩储层分类渗透率评价方法——以陆丰油田古近系文昌组W53油藏为例[J]. 物探与化探, 2022, 46(1): 78-86.
[2] 卢毓周, 徐磊, 魏斌, 王晓锋. 利用流动单元计算高含水油田渗透率[J]. 物探与化探, 2004, 28(2): 156-158.
[3] 陈曜岑. 利用测井资料研究和评价盖层的封闭性能[J]. 物探与化探, 1995, 19(3): 186-194.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com