Please wait a minute...
E-mail Alert Rss
 
物探与化探  2021, Vol. 45 Issue (2): 423-431    DOI: 10.11720/wtyht.2021.1181
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
页岩气水平井TOC测井评价新方法
刘伟男1,2(), 张超谟1(), 朱林奇3, 胡松4, 孔政5, 邓瑞1
1.油气资源与勘探技术教育部重点实验室(长江大学),湖北 武汉 430100
2.中海石油(中国)有限公司 深圳分公司,广东 深圳 518054
3.中国科学院 深海科学与工程研究所,海南 三亚 572000
4.中国石化石油勘探开发研究院,北京 100083
5.中石化胜利油田勘探开发研究院,山东 东营 257099
A new method for TOC logging evaluation in shale gas for horizontal well
LIU Wei-Nan1,2(), ZHANG Chao-Mo1(), ZHU Lin-Qi3, HU Song4, KONG Zheng5, DENG Rui1
1. Key Laboratory of Exploration Technologies for Oil and Gas Resources, Yangtze University, Wuhan 430100, China
2. Shenzhen Branch, CNOOC China Co., Ltd., Shenzhen 518054, China
3. Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
4. Exploration & Production Research Institute, SINOPEC, Beijing 100083, China
5. Exploration and Development Research Institute, Shengli Oilfield company, SINOPEC, Dongying 257099, China
全文: PDF(3133 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

由于存在地层缺失、井眼穿层不断变化、重点层段测井曲线较少、井眼环境复杂、测井响应值与储层参数关系较为复杂等特点,页岩气储层水平井测井解释难度较大。针对该问题,本文采用“水平井钻遇地层模型—水平井间及水平井与直井响应差异分析—水平井曲线校正—基于直井的参数评价模型”的评价技术流程,进行页岩气水平井TOC测井评价。在测井评价中,针对响应规律复杂的特点,采用直方图法进行测井响应规律分析,同时考虑到水平井测井曲线较少,为了综合利用测井曲线信息,结合曲线重叠方法提出双重信息融合评价模型。结果表明,本方法在充分分析测井响应差异的基础上对水平井测井曲线进行校正,且提出的双重信息融合模型具有能充分利用测井信息、评价精度高以及操作简单等优点。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘伟男
张超谟
朱林奇
胡松
孔政
邓瑞
关键词 页岩气测井响应差异水平井测井曲线校正TOC双重信息融合    
Abstract

Due to the lack of layer, the constant change in borehole formation, the fewer logging curves in key intervals, the complex borehole environment, the complex relationship between logging response and reservoir parameters and some other factors, the logging interpretation of horizontal well in shale gas is difficult. Aimed at tackling this problem, the authors adopted the evaluation technique flow of "Formation method of horizontal well logging-Analysis of response differences between horizontal wells and between horizontal and vertical wells-Correction of horizontal well curves-Parameter evaluation method based on vertical wells" to evaluate TOC in shale gas for horizontal wells. In the logging evaluation, in view of the complex response law, the histogram method is used to analyze the logging response law and, in consideration of the fact that there are fewer logging curves for horizontal wells in the logging evaluation, a dual information fusion method is proposed based on combination with curve overlap method so as to comprehensively utilize the logging curve information. The results show that this method can correct horizontal well logging curves based on fully analyzing the logging response differences, and the dual information fusion method has the advantages of full use of logging information, high accuracy of evaluation method and simple operation.

Key wordsshale gas    the logging response difference    the correction of logging curves in horizontal well    TOC    dual information fusion
收稿日期: 2020-04-16      修回日期: 2020-11-13      出版日期: 2021-04-20
ZTFLH:  TE19  
基金资助:国家科技重大专项(2016ZX05060-002);国家科技重大专项(2017ZX05032003-005);长江大学优秀硕士学位论文培育计划资助项目
通讯作者: 张超谟
作者简介: 刘伟男(1995-),男,硕士,主要研究方向为测井综合评价及解释。Email: lwn1995@126.com
引用本文:   
刘伟男, 张超谟, 朱林奇, 胡松, 孔政, 邓瑞. 页岩气水平井TOC测井评价新方法[J]. 物探与化探, 2021, 45(2): 423-431.
LIU Wei-Nan, ZHANG Chao-Mo, ZHU Lin-Qi, HU Song, KONG Zheng, DENG Rui. A new method for TOC logging evaluation in shale gas for horizontal well. Geophysical and Geochemical Exploration, 2021, 45(2): 423-431.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2021.1181      或      https://www.wutanyuhuatan.com/CN/Y2021/V45/I2/423
Fig.1  Y试验区水平井参数评价新方法流程
Fig.2  Y3水平井井眼轨迹与地层接触关系
Fig.3  Y试验区水平井目的层段测井响应直方图
Fig.4  Y试验区水平井I号峰上缘测井响应直方图
井名 深度范围斜深/m
Y1井 4 075.0~5 577.7
Y2井 5 195.0~5 488.7
Y3井 5 656~5 873
Table 1  Y试验区水平井段I号峰上缘深度统计
Fig.5  Y3井I号峰上缘层位直井与水平井测井响应直方图
参数 直井峰值 水平井峰值
AC/(μs·ft-1) 76 71
RD/(Ω·m) 22.4 25.1
GR/API 160 150
KTH/API 90 100
Table 2  Y3井水平井和直井I号峰上缘响应值统计
参数 AC/(μs·ft-1) RD/(Ω·m) GR/API KTH/API
校正量 5 -2.7 10 -10
Table 3  Y3井水平井测井响应值校正量统计
名称 模型表达式
单ΔlogR模型 TOC_ΔlogR=1.66ΔlogR+4.26
单DC模型 TOC_DC=11.92DC+1.095
双重融合模型 TOC = 0.32TOC_ΔlogR+0.68TOC_DC
Table 4  Y试验区TOC计算模型
Fig.6  Y3井直井TOC预测结果
模型 绝对误差/% 相对误差/%
单ΔlogR TOC预测模型 1.07 35.91
单DC TOC预测模型 0.41 13.76
双重融合TOC预测模型 0.16 5.36
Table 5  Y试验区导眼段TOC误差统计
Fig.7  Y试验区直井—水平井TOC预测结果
[1] 林永学, 王显光, 李荣府. 页岩气水平井低油水比油基钻井液研制及应用[J]. 石油钻探技术, 2016,44(2):28-33.
[1] Lin Y S, Wang X G, Li R F. Development of oil-based drilling fluid with low oil-water ratio and its application to drilling horizontal shale gas wells[J]. Petroleum Drilling Techniques, 2016,44(2):28-33.
[2] 高德利. 大型丛式水平井工程与山区页岩气高效开发模式[J]. 天然气工业, 2018,8(8):1-7.
[2] Gao D L. A high-efficiency development mode of shale gas reservoirs in mountainous areas based on large cluster horizontal well engineering[J]. Natural Gas Industry, 2018,8(8):1-7.
[3] 肖文, 文凯民, 谢川, 等. 页岩气水平井钻完井技术研究[J]. 科技展望, 2015(27):116-120.
[3] Xiao W, Wen K M, Xie C, et al. Techniques of shale gas horizontal well drilling and completion[J]. Science and Technology, 2015(27):116-120.
[4] 任岚, 林然, 赵金洲, 等. 页岩气水平井增产改造体积评价模型及其应用[J]. 天然气工业, 2018,38(8):47-56.
[4] Ren L, Lin R, Zhao J Z, et al. A stimulated reservoir volume (SRV) evaluation model and its application to shale gas well productivity enhancement[J]. Natural Gas Industry, 2018,38(8):47-56.
[5] 周灿灿, 王昌学. 水平井测井解释技术综述[J]. 地球物理学进展, 2006,21(1):152-160.
[5] Zhou C C, Wang C X. Technology review on the log interpretation of horizontal well[J]. Process in Geophysics, 2006,21(1):152-160.
[6] 程庆昭, 魏修平, 宿伟. 水平井测井解释评价技术综述[J]. 非常规油气, 2016,3(2):93-98.
[6] Cheng Q Z, Wei X P, Su W. Summary of horizontal well logging interpretation and evaluation technology[J]. Unconventional Oil and Gas, 2016,3(2):93-98.
[7] 凡刚. 水平井测井解释在江苏油田的应用[J]. 中外能源, 2008,13(6):55-58.
[7] Fan G. Application of logging interpretation for horizontal well in Jiangsu Oilfield[J]. Sino-Global Energy, 2008,13(6):55-58.
[8] 陈元千, 汤晨阳, 陈奇. 等温吸附量计算方法的推导及应用[J]. 油气地质与采收率, 2018,25(6):56-62.
[8] Chen Y Q, Tang C Y, Chen Q. Derivation and application of isothermal adsorption rate calculation method[J]. Petroleum Geology and Recovery Efficiency, 2018,25(6):56-62.
[9] 李英杰, 左建平, 姚茂宏, 等. 页岩气超临界等温吸附模型及储量计算优化[J]. 中国矿业大学学报, 2019,48(2):328-338.
[9] Li Y J, Zuo J P, Yao M H, et al. Improved shale gas supercritical isothermal model and the calculation method of geologic reserve[J]. Journal of China University of Mining and Technology, 2019,48(2):328-338.
[10] 曲鸿雁, 彭岩, 刘继山, 等. 气体吸附对页岩裂缝表观渗透率和页岩气采收率的影响[J]. 中国科学:技术科学, 2018,48(8):891-900.
[10] Qu H Y, Peng Y, Liu J S, et al. Impact of gas adsorption on apparent permeability of shale fracture and shale gas recovery rate[J]. Scientia Sinica Technologica, 2018,48(8):891-900.
[11] 汪中浩, 易觉非, 赵乾富, 等. 水平井测井资料地质解释应用[J]. 江汉石油学院学报, 2004,26(3):70-72.
[11] Wang Z H, Yi J F, Zhao Q F, et al. Application of geologic interpretation of horizontal well logging data[J]. Journal of Jianghan Petroleum Institute, 2004,26(3):70-72.
[12] 吕萍, 张永敏. 水平井咨询系统的原理与应用[J]. 测井技术, 2004,28(5):455-457.
[12] Lyu P, Zhang Y M. Theory and application of horizontal well advisement system[J]. Well Logging Technology, 2004,28(5):455-457.
[13] 赵军, 海川. 水平井测井解释中井眼轨迹与油藏关系分析技术[J]. 测井技术, 2004,28(2):145-147.
[13] Zhao J, Hai C. The analysis technique of relationship between well trajectory and reservoir in horizontal log interpretation[J]. Well Logging Technology, 2004,28(2):145-147.
[14] 胡松, 周灿灿, 王昌学, 等. 泥页岩油气藏水平井评价对策与实践[J]. 地球物理学进展, 2013,28(4):1877-1885.
[14] Hu S, Zhou C C, Wang C X, et al. The strategies ad practice of horizontal well evaluation in shale hydrocarbon reservoir[J]. Progress in Geophysics, 2013,28(4):1877-1885.
[15] 余义常, 徐怀民, 江同文, 等. 海相碎屑岩水平井隔夹层识别与表征——以哈得逊油田东河砂岩为例[J]. 中国矿业大学学报, 2018,47(6):1400-1411.
[15] Yu Y C, Xu H M, Jiang T W, et al. Identification and characterization of interlayers on horizontal well in marine clastic reservoirs: A case study of Donghe sandstone in Hadeson oilfield, Tarim basin[J]. Journal of China University of Mining and Technology, 2018,47(6):1400-1411.
[16] 时建超, 屈雪峰, 雷启鸿, 等. 致密油水平井声波时差测井影响因素分析及测井响应特征研究——以鄂尔多斯盆地陇东地区长7储层为例[J]. 西北大学学报:自然科学版, 2017,47(4):585-592.
[16] Shi J C, Qu X F, Lei Q H, et al. The influencing factors and response characteristics of acoustic time logging in tight oil horizontal well: A case study of Chang 7 reservoir in Longdong Area of Ordos Basin[J]. Journal of Northwest University:Natural Science Edition, 2017,47(4):585-592.
[17] 黄兵, 万昕, 王明华. 富顺永川区块页岩气水平井优快钻井技术研究[J]. 钻采工艺, 2015,38(2):14-16.
[17] Huang B, Wang X, Wang M H. Research on optimized shale gas horizontal well drilling technologies in Fushun-Yongchuan Block[J]. Drilling and Production Technology, 2015,38(2):14-16.
[18] 董大忠, 施振生, 管全中, 等. 四川盆地五峰组—龙马溪组页岩气勘探进展、挑战与前景[J]. 天然气工业, 2018,38(4):67-76.
[18] Dong D Z, Shi Z S, Guang Q Z, et al. Process, challenges and prospects of shale gas exploration in the Wufeng-Longmaxi reservoirs in the Sichuan Basin[J]. Natural Gas Industry, 2018,38(4):67-76.
[19] 王开亮, 李凯强, 王励坤, 等. 四川盆地东缘石柱地区五峰—龙马溪组页矿物组分及含气性特征[J]. 兰州大学学报:自然科学版, 2018,54(3):285-302.
[19] Wang K L, Li K Q, Wang L K, et al. Mineral composition and gas-bearing characteristics of Wufeng-Longmaxi shale in Shizhu area, eastern Sichuan Basin[J]. Journal of Lanzhou University: Natural Sciences, 2018,54(3):285-302.
[20] 郭洪志. WY地区页岩气藏测井精细评价[D]. 成都:西南石油大学, 2014.
[20] Guo H Z. Comprehensive logging evaluation for shale gas reservoirs in WY area[D]. Chengdu: Southwest Petroleum University, 2014.
[21] 熊镭, 张超谟, 张冲, 等. A地区页岩气储层总有机碳含量测井评价方法研究[J]. 岩性油气藏, 2014,26(3):74-78+83.
[21] Xiong L, Zhang C M, Zhang C, et al. Research on logging evaluation method of TOC content of shale gas reservoir in A area[J]. Lithology Reservoirs, 2014,26(3):74-78+83.
[22] 袁超, 周灿灿, 胡松, 等. 地层有机碳含量测井评价方法综述[J]. 地球物理学进展, 2014,29(6):2831-2837.
[22] Yuan C, Zhou C C, Hu S, et al. Summary on well logging evaluation method of total organic carbon content in formation[J]. Process in Geophysics, 2014,29(6):2831-2837.
[23] 陈祖庆. 海相页岩TOC地震定量预测技术及其应用——以四川盆地焦石坝地区为例[J]. 天然气工业, 2014,34(6):24-29.
[23] Chen Z Q. Quantitative seismic prediction technique of marine shale TOC and its application: A case from the Longmaxi shale play in the Jiaoshiba area, Sichuan Basin[J]. Natural Gas Industry, 2014,34(6):24-29.
[24] 孟召平, 郭彦省, 刘尉. 页岩气储层有机碳含量与测井参数的关系及预测模型[J]. 煤炭学报, 2015,40(2):247-253.
[24] Meng Z P, Guo Y S, Liu W. Relationship between organic carbon content of shale gas reservoirs and logging parameters and its prediction model[J]. Journal of China Coal Society, 2015,40(2):247-253.
[25] 王建国, 李忠刚, 朱智, 等. 基于测井方法的页岩有机碳含量计算[J]. 大庆石油地质与开发, 2015,34(3):170-174.
[25] Wang J G, Li Z G, Zhu Z, et al. Calculation of the shale TOC extents based on the well logging methods[J]. Petroleum Geology and Oilfield Development in Daqing, 2015,34(3):170-174.
[26] 别凡, 万宇, 聂昕, 等. 页岩气储层总有机碳含量测井评价新方法[J]. 测井技术, 2016,40(6):736-738.
[26] Bie F, Wan Y, Nie X, et al. A new method of TOC content evaluation in shale gas reservoirs with log data[J]. Well Logging Technology, 2016,40(6):736-738.
[27] Passey Q, Creaney S, Kulla J, et al. A practical model for organic richness from porosity and resistivity logs[J]. AAPG, 1990,74(12):1777-1794.
[28] Zhao P, Mao Z, Huang Z, et al. A new method for estimating total organic carbon content from well logs[J]. AAPG, 2017,100(8):1311-1327.
[29] Xu J, Li Y, Zhang B, et al. A logging-curve separation scale overlay method for total-organic-carbon estimation in organic-rich shale reservoirs[J]. Interpretation, 2017,5(3):T387-T398.
[1] 余长恒, 郑健, 张旭林, 周昊, 王安平, 刘磊, 李易. 川南地区页岩气井平台钻前工程物探集成技术[J]. 物探与化探, 2023, 47(1): 99-109.
[2] 罗卫锋, 胡志方, 甘伏平, 张庆玉, 康海霞, 张云枭. 南方碳酸盐岩地区页岩气钻探井位选址中的综合物探方法应用[J]. 物探与化探, 2022, 46(4): 824-829.
[3] 吴雯, 王猛, 杨迪琨, 陈默, 任林彬. 页岩气水力压裂分布式微弱电场监测技术初探[J]. 物探与化探, 2022, 46(3): 557-562.
[4] 殷启春, 王元俊, 周道容, 张丽, 孙桐. 复电阻率法在安徽南陵盆地海相页岩气勘探中的应用[J]. 物探与化探, 2022, 46(3): 668-677.
[5] 崔瑞康, 孙建孟, 刘行军, 文晓峰. 低阻页岩电阻率主控因素研究[J]. 物探与化探, 2022, 46(1): 150-159.
[6] 欧居刚, 王小兰, 杨晓, 邓小江, 黄诚, 李文佳. 水平井地震导向技术探索与应用——以四川盆地复杂地区页岩气井为例[J]. 物探与化探, 2021, 45(3): 551-559.
[7] 刘昊娟. 地应力地震预测及其在南川页岩气开发中的应用[J]. 物探与化探, 2021, 45(3): 560-568.
[8] 张勇, 马晓东, 李彦婧, 蔡景顺. 深度学习在南川页岩气含气量预测中的应用[J]. 物探与化探, 2021, 45(3): 569-575.
[9] 李帝铨, 汪振兴, 胡艳芳, 王涵, 苏煜堤. 广域电磁法在武陵山区页岩气勘探中的探索应用——以黔北桐梓地区为例[J]. 物探与化探, 2020, 44(5): 991-998.
[10] 田巍, 李旭兵, 王保忠. 大地电磁测深在湘东南坳陷页岩气勘探中的应用[J]. 物探与化探, 2019, 43(2): 281-289.
[11] 孟凡洋, 包书景, 陈科, 王鹏, 李柳德. 基于广域电磁法的页岩气有利区预测——以渝东北巫山地区为例[J]. 物探与化探, 2018, 42(1): 68-74.
[12] 谈迎, 杨伟松, 李振生. 陆相页岩气资源评价中人工智能算法的探索——以苏北盆地溱潼凹陷为例[J]. 物探与化探, 2018, 42(1): 96-103.
[13] 凌帆, 朱裕振, 周明磊, 田红军. 广域电磁法在南华北盆地长山隆起页岩气资源潜力评价中的应用[J]. 物探与化探, 2017, 41(2): 369-376.
[14] 杨松霖, 袁博, 李帝铨. 高陡双复杂地区多种页岩气勘探方法效果对比[J]. 物探与化探, 2016, 40(5): 941-946.
[15] 屈大鹏, 陈超, 王明飞, 苏建龙. 川东南地区基于海相泥页岩地层的压力系数预测——以丁山区块为例[J]. 物探与化探, 2016, 40(2): 349-352,389.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com