Please wait a minute...
E-mail Alert Rss
 
物探与化探  2021, Vol. 45 Issue (3): 551-559    DOI: 10.11720/wtyht.2021.1109
  清洁能源勘探 本期目录 | 过刊浏览 | 高级检索 |
水平井地震导向技术探索与应用——以四川盆地复杂地区页岩气井为例
欧居刚1,2(), 王小兰1,2, 杨晓1,2, 邓小江1,2, 黄诚1,2, 李文佳1,2
1.中石油集团物探重点实验室—页岩气地球物理研究室,四川 成都 610213
2.东方地球物理勘探公司 西南物探研究院,四川 成都 610213
The exploration and application of horizontal well seismic guidance technology:A case study of shale wells in the complex area of Sichuan basin
OU Ju-Gang1,2(), WANG Xiao-Lan1,2, YANG Xiao1,2, DENG Xiao-Jiang1,2, HUANG Cheng1,2, LI Wen-Jia1,2
1. Chengdu Research Center of Geophysical Prospecting Company,SPA,Chengdu 610213,China
2. Southwest Geophysical Institute of BGP,CNPC,Chengdu 610213,China
全文: PDF(11591 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

四川盆地南部志留系龙马溪组页岩层具有埋藏深度大(>3 000 m)、优质页岩段厚度薄、地层倾角变化快、微幅构造和微断裂发育等地质特点,传统地质导向技术难以准确识别纵向上甜点的靶体位置,水平段钻井过程中面临较高的靶体脱靶和出层风险。三维地震资料能够给水平井的侧钻和入靶提供导向,并通过地震资料指导水平段钻进。本文以四川盆地南部复杂地区页岩气水平井地震跟踪为例,介绍基于各向异性叠前深度偏移三维数据体的水平井地震导向技术新思路:以高精度成像资料为基础,考虑区域速度场背景,地质约束速度建模确保精准入靶;同时开展目标区块实时各向异性深度偏移处理,提高储层钻遇率;钻井过程中地震实时跟踪,有效帮助钻井地质导向,为钻井工程提供预警和调整方案。实钻表明:面向开发和工程需求的页岩气复杂构造区水平井地震导向技术,可有效提高水平井的有效储层钻遇率。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
欧居刚
王小兰
杨晓
邓小江
黄诚
李文佳
关键词 页岩气水平井地震导向各向异性深度偏移    
Abstract

The Silurian Longmaxi Formation shale in the south of Sichuan Basin has the geological characteristics of large burial depth (more than 3000 meters), thin thickness of high-quality shale section,rapid change of formation dip angle,and development of micro structure and micro fracture.It is difficult for the traditional geosteering technology to accurately identify the target location of the longitudinal sweet spot.During the drilling process of horizontal section,there is a high risk of target miss target and formation production.The 3D seismic data can provide guidance for sidetracking and target entry of horizontal wells and guide horizontal drilling.Taking the seismic tracking of shale gas horizontal wells in the complex area of southern Sichuan Basin as an example,this paper introduces a new idea of horizontal well seismic guidance technology based on anisotropic prestack depth migration three-dimensional data volume.Based on high-precision imaging data and considering regional velocity field background,geological constraint velocity modeling ensures accurate target and,at the same time,real-time anisotropic depth migration of target block can be carried out.In addition,real-time seismic tracking during drilling can effectively help drilling geosteering and provide early warning and adjustment scheme for drilling engineering.The actual drilling shows that the seismic steering technology for horizontal wells in shale gas complex structural areas can effectively improve the effective reservoir drilling rate of horizontal wells for development and engineering needs.

Key wordsshale gas    horizontal well    seismic guidance    anisotropic    depth migration
收稿日期: 2020-08-21      修回日期: 2021-03-01      出版日期: 2021-06-20
ZTFLH:  P631.4  
基金资助:国家科技重大专项“大型油气田及煤层气开发,页岩气藏地球物理响应与优质储层识别”(2017ZX05035003)
作者简介: 欧居刚(1975-),男,从事地震勘探研究工作。Email: oujugang_sc@cnpc.com.cn
引用本文:   
欧居刚, 王小兰, 杨晓, 邓小江, 黄诚, 李文佳. 水平井地震导向技术探索与应用——以四川盆地复杂地区页岩气井为例[J]. 物探与化探, 2021, 45(3): 551-559.
OU Ju-Gang, WANG Xiao-Lan, YANG Xiao, DENG Xiao-Jiang, HUANG Cheng, LI Wen-Jia. The exploration and application of horizontal well seismic guidance technology:A case study of shale wells in the complex area of Sichuan basin. Geophysical and Geochemical Exploration, 2021, 45(3): 551-559.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2021.1109      或      https://www.wutanyuhuatan.com/CN/Y2021/V45/I3/551
Fig.1  长宁、威远建产区典型评价井五峰组—龙一1亚段的小层划分综合柱状图
Fig.2  X水平井地质导向工程图
Fig.3  基于目标区块各向异性叠前深度偏移资料的水平段地震导向技术流程
Fig.4  钻井过程实时跟踪叠前深度快速处理流程
Fig.5  地层厚度约束井震误差平面对比(区内单井)
Fig.6  层厚约束各向异性叠前深度偏移前后对比
a—常规各向异性叠前深度偏移剖面;b—层厚约束各向异性叠前深度偏移剖面
Fig.7  泸州地区X设计井轨迹深度剖面叠合裂缝预测成果
Fig.8  入靶前井轨迹深度剖面叠合裂缝预测成果
Fig.9  更新速度场后深度剖面叠合裂缝预测成果
Fig.10  水平段钻进过程中实钻与地震预测地层倾角不符
a—工程图;b—实钻轨迹与地震剖面叠合图
Fig.11  各向异性叠前深度偏移叠合蚂蚁体剖面
a—工程图;b—实钻轨迹与地震剖面叠合图
[1] 董大忠, 施振生, 管全中, 等. 四川盆地五峰组—龙马溪组页岩气勘探进展、挑战与前景[J]. 天然气工业, 2018, 38(4):67-76.
[1] Dong D Z, Shi Z S, Guan Q Z, et al. Progress,challenges and prospects of shale gas exploration in the Wufeng-Longmaxi reservoirs in the Sichuan Basin[J]. Natural Gas Industry, 2018, 38(4):67-76.
[2] 李振春. 地震叠前成像理论与方法[M]. 东营: 中国石油大学出版社, 2011.
[2] Li Z C. Theory and method of seismic prestack imaging[M]. Dongying: China University of Petroleum Press, 2011.
[3] Peng C, Yu H, Sheng J. Localized seismic imaging using diplets[P].US, 8010933, 2011-08-30.
[4] Zhao X, Sheng J, Hu Y, et al. 3D localized prestack depth migration from workstations [C]//Extended Abstract of 72nd EAGE Conference & Exhibition , 2010: 680344.
[5] 刘树根, 邓宾, 钟勇, 等. 四川盆地及周缘下古生界页岩气深埋藏—强改造独特地质作用[J]. 地学前缘, 2016, 23(1):11-28.
[5] Liu S G, Deng B, Zhong Y, et al. Unique geological features of burial and superimposition of the Lower Paleozoic shale gas across the Sichuan Basin and its periphery[J]. Earth Science Frontiers, 2016, 23(1):11-28.
[6] 张岳桥, 董树文, 李建华, 等. 中生代多向挤压构造作用与四川盆地的形成和改造[J]. 中国地质, 2011, 38(2):233-250.
[6] Zhang Y Q, Dong S W, Li J H, et al. Mesozoic multi-directional compressional tectonics and formation-reformation of Sichuan basin[J]. Geology in China, 2011, 38(2):233-250.
[7] 蒲泊伶, 蒋有录, 王毅, 等. 四川盆地下志留统龙马溪组页岩气成藏条件及有利地区分析[J]. 石油学报, 2010, 31(2):225-230.
[7] Pu B L, Jiang Y L, Wang Y, et al. Reservoir-forming conditions and favorable exploration zones of shale gas in Lower Silurian Longmaxi Formation of Sichuan Basin[J]. Acta Petrolei Sinica, 2010, 31(2):225-230.
[8] 王红岩, 刘玉章, 董大忠, 等. 中国南方海相页岩气高效开发的科学问题[J]. 石油勘探与开发, 2013, 40(5):574-579.
[8] Wang H Y, Liu Y Z, Dong D Z, et al. Scientific issues on effective development of marine shale gas in southern China[J]. Petroleum Exploration and Development, 2013, 40(5):574-579.
[9] 郭旭升. 南方海相页岩气“二元富集”规律——四川盆地及周缘龙马溪组页岩气勘探实践认识[J]. 地质学报, 2014, 88(7):1209-1218.
[9] Guo X S. Rules of two-factor enrichiment for marine shale gas in southern China—Understanding from the Longniaxi formation shale gas in Sichuan Basin and its surrounding area[J]. Acta Geologica Sinica, 2014, 88(7):1209-1218.
[10] 郭旭升, 胡东风, 魏志红, 等. 涪陵页岩气田的发现与勘探认识[J]. 中国石油勘探, 2016, 21(3):24-37.
[10] Guo X S, Hu D F, Wei Z H, et al. Discovery and exploration of Fuling shale gas field[J]. China Petroleum Exploration, 2016, 21(3):24-37.
[11] 谢军, 赵圣贤, 石学文, 等. 四川盆地页岩气水平井高产的地质主控因素[J]. 天然气工业, 2017, 37(7):1-12.
[11] Xie J, Zhao S X, Shi X W, et al. Main geological factors controlling high production of horizontal shale gas wells in the Sichuan Basin[J]. Natural Gas Industry, 2017, 37(7):1-12.
[12] 刘乃震, 王国勇. 四川盆地威远区块页岩气甜点厘定与精准导向钻井[J]. 石油勘探与开发, 2016, 43(6):978-985.
[12] Liu N Z, Wang G Y. Shale gas sweet spot identification and precise geo-steering drilling in Weiyuan Block of Sichuan Basin,SW China[J]. Petroleum Exploration and Development, 2016, 43(6):978-985.
[13] 查树贵, 刘利平, 廖朋, 等. 水平井地震地质导向技术及其在涪陵页岩气田的应用[J]. 石油物探, 2018, 57(3):369-377.
[13] Zha S G, Liu L P, Liao P, et al. Seismic geosteering technology of horizontal well and its application in Fuling shale gas field[J]. Geophysical Prospecting for Petroleum, 2018, 57(3):369-377.
[14] 罗鑫. 昭通页岩气示范区复杂地质条件下的地质导向技术[J]. 钻采工艺, 2018, 41(3):29-32.
[14] Luo X. Geosteering technology for complex geological conditions at Zhaotong shale gas development demonstration area[J]. Drilling & Production Technology, 2018, 41(3):29-32.
[15] 孙涛, 金瑞峰, 吴蜀燕, 等. GeosEast复杂构造速度建场技术[J]. 石油工业计算机应用, 2016, 24(3):48-51.
[15] Sun T, Jin R F, Wu S Y, et al. GeoEast complex structure velocity field building technology[J]. CAP, 2016, 24(3):48-51.
[16] 黄芳燕. 复杂地质构造速度模型插值方法研究[J]. 世界有色金属, 2016, 18(3):30-32.
[16] Huang F Y. Study on velocity model interpolation method of complex structure[J]. World Nonferrous Metal, 2016, 18(3):30-32.
[17] 杨宗青, 李宏伟, 欧居刚, 等. TTI介质各向异性参数优化提取方法[J]. 石油地球物理勘探, 2020, 55(1):111-116.
[17] Yang Z Q, Li H W, Ou J G, et al. An optimized method for extracting anisotropic parameters in TTI media[J]. Oil Geophysical Prospecting, 2020, 55(1):111-116.
[1] 余长恒, 郑健, 张旭林, 周昊, 王安平, 刘磊, 李易. 川南地区页岩气井平台钻前工程物探集成技术[J]. 物探与化探, 2023, 47(1): 99-109.
[2] 唐军, 刘沁园, 赖强, 吴煜宇, 许巍. 白云岩声电各向异性实验测量及分析[J]. 物探与化探, 2022, 46(6): 1492-1499.
[3] 谢锐, 阎建国, 陈琪. 叠前各向异性系数反演及在裂缝预测中的应用[J]. 物探与化探, 2022, 46(4): 968-976.
[4] 罗卫锋, 胡志方, 甘伏平, 张庆玉, 康海霞, 张云枭. 南方碳酸盐岩地区页岩气钻探井位选址中的综合物探方法应用[J]. 物探与化探, 2022, 46(4): 824-829.
[5] 吴雯, 王猛, 杨迪琨, 陈默, 任林彬. 页岩气水力压裂分布式微弱电场监测技术初探[J]. 物探与化探, 2022, 46(3): 557-562.
[6] 殷启春, 王元俊, 周道容, 张丽, 孙桐. 复电阻率法在安徽南陵盆地海相页岩气勘探中的应用[J]. 物探与化探, 2022, 46(3): 668-677.
[7] 郭建磊. 轴向各向异性地层瞬变电磁三分量响应特征[J]. 物探与化探, 2022, 46(2): 362-372.
[8] 窦强峰, 罗勇, 杨晓海, 谭佳. 基于近似真地表浮动面叠前深度偏移成像技术应用研究[J]. 物探与化探, 2022, 46(2): 444-450.
[9] 苏林帅, 蔡明, 郑占树, 徐宝宝, 罗居森, 胡燕杰, 张荆宇. 井眼扩径对水平井声波测井响应影响的数值模拟[J]. 物探与化探, 2022, 46(2): 467-473.
[10] 崔瑞康, 孙建孟, 刘行军, 文晓峰. 低阻页岩电阻率主控因素研究[J]. 物探与化探, 2022, 46(1): 150-159.
[11] 刘昊娟. 地应力地震预测及其在南川页岩气开发中的应用[J]. 物探与化探, 2021, 45(3): 560-568.
[12] 张勇, 马晓东, 李彦婧, 蔡景顺. 深度学习在南川页岩气含气量预测中的应用[J]. 物探与化探, 2021, 45(3): 569-575.
[13] 孙永壮, 李键, 秦德文, 刘庆文. 三维边缘保持滤波方法在海上地震数据噪声压制中的应用研究——以东海某凹陷为例[J]. 物探与化探, 2021, 45(3): 692-701.
[14] 刘伟男, 张超谟, 朱林奇, 胡松, 孔政, 邓瑞. 页岩气水平井TOC测井评价新方法[J]. 物探与化探, 2021, 45(2): 423-431.
[15] 徐蔚亚. 关于浮动基准面与起伏地表面的讨论[J]. 物探与化探, 2021, 45(1): 95-101.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com