Please wait a minute...
E-mail Alert Rss
 
物探与化探  2021, Vol. 45 Issue (3): 737-741    DOI: 10.11720/wtyht.2021.1488
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
瞬变电磁感应式天线分布电容零相位测试方法与应用
席振铢1(), 木仁1, 徐昱2(), 周胜1,3, 陈兴朋3
1.中南大学 地球科学与信息物理学院,湖南 长沙 410083
2.湖南省计量检测研究院,湖南 长沙 410014
3.湖南五维地质科技有限公司,湖南 长沙 410205
The principle and application of zero phase measurement of resonant frequency of transient electromagnetic induction antenna
XI Zhen-Zhu1(), MU Ren1, XU Yu2(), ZHOU Sheng1,3, CHEN Xing-Peng3
1. School of Geosciences and Info-Physics,Central South University,Changsha 410083,China
2. Hunan Institute of Metrology and Test,Changsha 410014,China
3. Hunan Wuwei Geological Technology Co., Ltd., Changsha 410205,China
全文: PDF(1337 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

瞬变电磁感应式接收天线处于临界阻尼状态时,主输出信号才是纯目标体的感应信号。这种临界阻尼状态与接收天线的电感、分布电容以及电阻等电参数有关,其中电阻、电感值可以通过频谱仪直接测量得出,但是分布电容无法直接获取。为了能够研制高性能接收天线,本文提出了一种精确计算接收天线分布电容的方法。首先,构建瞬变电磁感应式接收天线等效电路模型;然后,推导输出信号零相位的谐振频率计算公式;最后,通过测量天线的谐振频率,并计算分布电容。为了验证了此方法的可行性,采用标准电容与计算电容比对,并测试了不同类型瞬变电磁感应式天线,测试结果表明:用零相位法计算分布电容精度高,方便快捷,可用于设计和制作高性能瞬变电磁感应式传感器。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
席振铢
木仁
徐昱
周胜
陈兴朋
关键词 瞬变电磁零相位谐振频率分布电容    
Abstract

When the transient electromagnetic receiving antenna is in a critically damped state, the output signal is the pure target induction signal. This critical damping state is related to electrical parameters such as inductance, distributed capacitance, and resistance of the receiving antenna. The resistance and inductance values can be directly measured by a spectrum analyzer, but the distributed capacitance cannot be directly obtained. In order to develop a high-performance receiving antenna, this paper proposes a method to accurately calculate the distributed capacitance of the receiving antenna. First, the equivalent circuit model of the transient electromagnetic induction receiving antenna is constructed; then, the calculation formula of the zero-phase resonance frequency of the output signal is derived; Finally, by measuring the resonant frequency of the antenna, the distributed capacitance is calculated. For the purpose of verifying the feasibility of this method, the standard capacitance is compared with the calculated capacitance, and different types of transient electromagnetic induction antennas are tested. The test results show that the zero-phase method can be used to calculate the distributed capacitance with high accuracy, convenience and fastness and can be used to design and produce high-performance transient inductive sensors.

Key wordstransient electromagnetic    zero phase    resonant frequency    distributed capacitance
收稿日期: 2020-10-26      出版日期: 2021-07-27
:  P631  
基金资助:2016年湖南省标准化专项经费“等值反磁通瞬变电磁法通用技术标准”(2011709)
通讯作者: 徐昱
作者简介: 席振铢(1966-),男,教授,主要从事金属矿产和工程地球物理勘探方法技术与装备研发工作。Email: xizhenzhu@163.com
引用本文:   
席振铢, 木仁, 徐昱, 周胜, 陈兴朋. 瞬变电磁感应式天线分布电容零相位测试方法与应用[J]. 物探与化探, 2021, 45(3): 737-741.
XI Zhen-Zhu, MU Ren, XU Yu, ZHOU Sheng, CHEN Xing-Peng. The principle and application of zero phase measurement of resonant frequency of transient electromagnetic induction antenna. Geophysical and Geochemical Exploration, 2021, 45(3): 737-741.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2021.1488      或      https://www.wutanyuhuatan.com/CN/Y2021/V45/I3/737
Fig.1  等效电路模型
标准实验电子元件 标准参数 实际数值
电感L/mH 7.2×(1±0.05) 7.298
电阻R 500.0×(1±0.05) 512.0
电容C/pF 30.0×(1±0.1) 31.8
100.0×(1±0.05) 99.0
220.0×(1±0.05) 222.8
330.0×(1±0.05) 328.2
470.0×(1±0.05) 474.0
680.0×(1±0.05) 689.6
Table 1  电子元件参数
谐振频率/kHz 实际值/pF 零相位法计算值/pF 误差/%
332.410 31.8 31.44 1.1
187.579 99.0 98.74 0.3
125.142 222.8 221.86 0.4
102.397 328.2 331.36 1.0
84.346 474.0 488.36 3.0
69.680 689.6 715.58 3.8
Table 2  电容的测试结果
Fig.2  零相位法计算与标准电容值的对比
Fig.3  瞬变电磁感应式天线等效电路
R L/mH f/kHz C/pF
1号线圈 15.309 10.297 358.995 19.09
2号线圈 15.268 10.348 361.122 18.77
总线圈 30.634 29.140 223.335 17.43
Table 3  线圈参数
阻尼系数K 电阻 RT/kΩ
R1/kΩ R2/kΩ R3/kΩ
0.080 560 560 470 331.069
0.209 270 270 120 98.182
0.437 75 75 68 46.789
1.000 x x y 20.453
1.097 30 30 27 18.621
24.629 3.900 3.900 0.910 0.815
50.819 1.100 1.100 0.470 0.387
97.799 0.510 0.510 0.240 0.194
Table 4  电阻参数
Fig.4  不同阻尼系数接收信号对比
[1] Nabighian M N, Macnae J C. Time domain electromagnetic prospecting methods[C]// Electromagnetic Methods in Applied Geophysics, 1991:427-520.
[2] 蒋邦远. 实用近区磁源瞬变电磁法勘探[M]. 北京: 地质出版社, 1998.
[2] Jiang B Y. Practical transient electromagnetic method prospecting in near zone of magnetic dipole source[M]. Beijing: Geological Publishing House, 1998.
[3] 薛国强, 李貅, 底青云. 瞬变电磁法理论与应用研究进展[J]. 地球物理学进展, 2007, 22(4):1195-1200.
[3] Xue G Q, Li X, Di Q Y. The progress of TEM in theory and application[J]. Progress in Geophysics, 2007, 22(4):1195-1200.
[4] 薛国强, 于景邨. 瞬变电磁法在煤炭领域的研究与应用新进展[J]. 地球物理学进展, 2017, 32(1):319-326.
[4] Xue G Q, Yu J C. New development of TEM research and application in coal mine exploration[J]. Progress in Geophysics, 2017, 32(1):319-326.
[5] 底青云, 朱日祥, 薛国强, 等. 我国深地资源电磁探测新技术研究进展[J]. 地球物理学报, 2019, 62(6):2128-2138.
[5] Di Q Y, Zhu R X, Xue G Q, et al. New development of the electromagnetic(EM) methods for deep exploration[J]. Chinese Journal of Geophysics, 2019, 62(6):2128-2138.
[6] 林君, 符磊, 王言章. 接地电性源空地瞬变电磁探测传感器的研制[J]. 吉林大学学报:工学版, 2014, 44(3):888-894.
[6] Lin J, Fu L, Wang Y Z. Development of an air-to-ground transient electromagnetic detection sensor for grounded electrical sources[J]. Journal of Jilin University:Engineering and Technology Edition, 2014, 44(3):888-894.
[7] 林君, 王琳, 王晓光. 矿井瞬变电磁探测中空芯线圈传感器的研制[J]. 地球物理学报, 2016, 59(2):721-730.
[7] Lin J, Wang L, Wang X G. Development of hollow core coil sensor for mine transient electromagnetic detection[J]. Chinese Journal of Geophysics, 2016, 59(2):721-730.
[8] 嵇艳鞠, 林君, 王忠. 瞬变电磁接收装置对浅层探测的畸变分析与数值剔除[J]. 地球物理学进展, 2007, 22(1):262-267.
[8] Ji Y J, Lin J, Wang Z. Research on Distortion of Whole Transient Field in Shallow Transient Electromagnetic Method[J]. Progress in Geophysics, 2007, 22(1):262-267.
[9] 王华军. 阻尼系数对瞬变电磁观测信号的影响特征[J]. 地球物理学报, 2010, 53(2):428-434.
[9] Wang H J. Characteristics of damping coefficient effect on transient electromagnetic signal[J]. Chinese Journal of Geophysics, 2010, 53(2):428-434.
[10] Matthaei G L, Chinn G C, Plott C H, et al. A simplified means for computation for interconnect distributed capacitances and inductances[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2006, 11(4):513-524.
doi: 10.1109/43.125099
[11] 林辛, 张雄金. 空芯线圈分布电容测试的研究[J]. 电测与仪表, 1997(7):25-27.
[11] Lin X, Zhang X J. Research on test of distributed capacitance of air core coil[J]. Electrical Measurement and Instrumentation, 1997(7):25-27.
[12] Prieto M J, Fernandez A, Diaz J M, et al. Influence of transformer parasitics in low-power applications[C]// Applied Power Electronics Conference & Exposition, 1999:1175-1180.
[13] Yu Q, Holmes T W. A study on stray capacitance modeling of inductors by using the finite element method[J]. IEEE Transactions on Electromagnetic Compatibility, 2001, 43(1):88-93.
doi: 10.1109/15.917948
[14] Lu H Y, Zhu J G, Ramsden V S, et al. Measurement and modeling of stray capacitances in high frequency transformers[C]// IEEE Power Electronics Specialists Conference, 1999:763-768.
[15] Lu H Y, Zhu J G, Ramsden V S. Comparison of experimental techniques for determination of stray capacitances in high frequency transformers[C]// IEEE Power Electronics Specialists Conference, 2000:1645-1650.
[16] Massarini A, Kazimierczuk M K. Self-capacitance of inductors[J]. IEEE Transactions on Power Electronics, 1997, 12(4):671-676.
doi: 10.1109/TPEL.63
[1] 邢涛, 袁伟, 李建慧. 回线源瞬变电磁法的一维Occam反演[J]. 物探与化探, 2021, 45(5): 1320-1328.
[2] 何可, 郭明, 胡章荣, 易国财, 王仕兴. 半航空瞬变电磁L1范数自适应正则化反演[J]. 物探与化探, 2021, 45(5): 1338-1346.
[3] 智庆全, 武军杰, 王兴春, 孙怀凤, 杨毅, 张杰, 邓晓红, 陈晓东, 杜利明. 在瞬变电磁三维正演中的应用[J]. 物探与化探, 2021, 45(4): 1037-1042.
[4] 李瑞友, 张淮清, 吴昭. 基于在线惯序极限学习机的瞬变电磁非线性反演[J]. 物探与化探, 2021, 45(4): 1048-1054.
[5] 裴肖明, 冯国瑞, 戚庭野. 瞬变电磁法探测复杂状态下煤矿充水采空区物理模拟实验[J]. 物探与化探, 2021, 45(4): 1055-1063.
[6] 刘伟, 黄韬, 王庭勇, 刘怡, 张继, 刘文涛, 张琦斌, 李强. 综合物探方法在城市隐伏断裂探测中的应用[J]. 物探与化探, 2021, 45(4): 1077-1087.
[7] 张莹莹. 电性源瞬变电磁法综述[J]. 物探与化探, 2021, 45(4): 809-823.
[8] 吴国培, 张莹莹, 张博文, 赵华亮. 基于深度学习的中心回线瞬变电磁全区视电阻率计算[J]. 物探与化探, 2021, 45(3): 750-757.
[9] 陈健强, 李雁川, 田浩, 李汉超. 含水采空区全空间瞬变电磁响应分析[J]. 物探与化探, 2021, 45(2): 546-550.
[10] 张莹莹. 多辐射场源半航空瞬变电磁法多分量响应特征分析[J]. 物探与化探, 2021, 45(1): 102-113.
[11] 李展辉, 杨淼鑫, 曹学峰. 瞬变电磁法感应电压场与B场探测效果的数值计算对比分析[J]. 物探与化探, 2021, 45(1): 114-126.
[12] 魏海民, 李星, 孙帮涛, 周胜, 牛杰. 地球物理方法在帷幕注浆治水中的探测分析[J]. 物探与化探, 2021, 45(1): 245-251.
[13] 陈紫静, 陈清礼. 瞬变电磁的逆时偏移成像方法[J]. 物探与化探, 2020, 44(6): 1415-1419.
[14] 刘杰, 段炜, 王俊, 刘成, 戴国强. 等值反磁通瞬变电磁法在公路隧道塌陷区的探测应用[J]. 物探与化探, 2020, 44(6): 1470-1475.
[15] 胡佳豪, 李貅, 刘航, 胡伟明, 岳鑫. TBM机施工隧道瞬变电磁超前探测研究[J]. 物探与化探, 2020, 44(5): 1183-1189.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com