Please wait a minute...
E-mail Alert Rss
 
物探与化探  2021, Vol. 45 Issue (3): 742-749    DOI: 10.11720/wtyht.2021.1279
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
基于压电效应的大地极化声子模拟研究
吴洋1,2(), 严家斌1,2
1.中南大学 地球科学与信息物理学院,湖南 长沙 410083
2.有色资源与地质灾害探查湖南省重点实验室,湖南 长沙 410083
A study of the simulation of geodetic polarization based on piezoelectric effect
WU Yang1,2(), YAN Jia-Bin1,2
1. School of Earth Sciences and Information Physics, Central South University, Changsha 410083, China
2. Key Laboratory of Non-ferrous Resources and Geological Hazard Detection, Changsha 410083, China
全文: PDF(904 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

大地极化声子测深技术是一种利用自然电磁辐射的被动源地球物理电磁勘探方法。本文从岩石的压电效应出发,导出了岩石压裂过程中产生的电磁辐射表达式,分析了电磁辐射频率的影响因素,通过数值模拟研究了压裂电磁辐射的频率响应特征。结果表明:基于岩石压电效应的大地极化声子测深具有与其他电磁探测方法相似的电磁响应特性,大地极化声子测深具有潜在的应用价值。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴洋
严家斌
关键词 大地极化声子压电效应电磁辐射正演    
Abstract

Geodetic polarization exploration technology is a passive source geophysical electromagnetic exploration method using natural electromagnetic radiation. Based on the piezoelectric effect of rock, the expression of electromagnetic radiation produced in the process of rock fracturing was derived. The influence factors of electromagnetic radiation frequency were analyzed, and the frequency response characteristics of electromagnetic radiation from fracturing were studied by numerical simulation. The results show that the geodetic polarization exploration technology based on the piezoelectric effect of rock has similar electromagnetic response characteristics to other electromagnetic detection methods, and the geodetic polarization exploration technology has potential application value.

Key wordsgeodetic polarization    piezoelectric effect    electromagnetic radiation    forward modeling
收稿日期: 2020-05-27      修回日期: 2021-03-12      出版日期: 2021-06-20
ZTFLH:  P631  
基金资助:国家重点研发计划项目“三维精细探测与深部矿体定位—深部多方法多参数联合探测及反演解释技术”(2018YFC0603903)
通讯作者: 严家斌
作者简介: 吴洋(1998-),男,硕士研究生,主要研究方向为电磁法正演。Email: wuyangcsu@163.com
引用本文:   
吴洋, 严家斌. 基于压电效应的大地极化声子模拟研究[J]. 物探与化探, 2021, 45(3): 742-749.
WU Yang, YAN Jia-Bin. A study of the simulation of geodetic polarization based on piezoelectric effect. Geophysical and Geochemical Exploration, 2021, 45(3): 742-749.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2021.1279      或      https://www.wutanyuhuatan.com/CN/Y2021/V45/I3/742
Fig.1  电磁辐射频率随岩石参数的变化
Fig.2  倾斜裂隙模型示意
Fig.3  裂隙电场幅值随倾角变化
Fig.4  裂隙电场矢量随倾角变化
Fig.5  组合裂隙模型示意
Fig.6  组合裂隙电场幅值
Fig.7  组合裂隙电场矢量
[1] 胥值礼, 孟庆敏, 崔志强, 等. 大地极化声子测深技术的调研与试用[J]. 物探与化探, 2014, 38(4):758-763.
[1] Xu Z L, Meng Q M, Cui Z Q, et al. The investigation and trial utilization of geopolariton sensing technology[J]. Geophysical and Geochemical Exploration, 2014, 38(4):758-763.
[2] 闫新智, 雷俊杰. 大地极化声子测深方法在延长油田某区块石油勘探方面的实验[C]// 中国石油石化企业信息化技术交流会论文集, 2011.
[2] Yan X Z, Lei J J. An experiment on the application of the method of geodetic polariton exploration technology in oil exploration of a block in Yanchang oilfield[C]// Paper collection of China Petroleum and petrochemical enterprise information technology exchange meeting, 2011.
[3] 薛承瑾. 页岩气压裂技术现状及发展建议[J]. 石油钻探技术, 2011, 39(3):24-29.
[3] Xue C J. Technical status and development proposals of shale gas fracturing[J]. Petroleum Drilling Techniques, 2011, 39(3):24-29.
[4] Cook N G W. The failure of rock[J]. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, 1965, 2(4):389-403.
[5] 华保钦. 构造应力场、地震泵和油气运移[J]. 沉积学报, 1995, 13(2):77-85.
[5] Hua B Q. Stress field, seismic pumping and oil-gas migration[J]. Acta Sedimentologica Sinica, 1995, 13(2):77-85.
[6] 唐志强, 李皋, 石祥超, 等. 岩石单轴冲击加载破碎特征分析[J]. 应用力学学报, 2019, 36(5):1076-1081,1258.
[6] Tang Z Q, Li G, Shi X C, et al. Analysis of rock fragmentation characteristics under uniaxial impact loading[J]. Chinese Journal of Applied Mechanics, 2019, 36(5):1076-1081,1258.
[7] 高美奔, 李天斌, 陈国庆, 等. 工程温压内花岗岩破裂特征与机理分析[J]. 科学技术与工程, 2018, 18(15):13-18.
[7] Gao M B, Li T B, Chen G Q, et al. The Analysis on Fracture Characteristics and Mechanism of Granite under Engineering Temperature and Pressure[J]. Science Technology and Engineering, 2018, 18(15):13-18.
[8] Cress G O, Brady B T, Rowell G A. Sources of electromagnetic radiation from fracture of rock samples in laboratory[J]. Geophysical Research Letters, 1987, 14(4):331-334.
doi: 10.1029/GL014i004p00331
[9] 龚强, 胡祥云, 张胜业, 等. 岩石破裂电磁辐射频率与弹性参数的关系[J]. 地球物理学报, 2006, 49(5):1523-1528.
[9] Gong Q, Hu X Y, Zhang S Y, et al. Relationship between frequency of electromagnetic radiation induced by rock fracture and the elastic parameters[J]. Chinese Journal of Geophysics, 2006, 49(5):1523-1528.
[10] 张孟举. 脆性岩石受载破碎声发射与电磁辐射特性试验研究[D]. 湘潭: 湖南科技大学, 2017.
[10] Zhang M J. A study on characteristics of acoustic emission and electromagnetic emission in brittle rock fragmentation under different load[D]. Xiangtan: Hunan University of Science and Technology, 2017.
[11] 聂百胜, 何学秋, 王恩元, 等. 煤体剪切破坏过程电磁辐射与声发射研究[J]. 中国矿业大学学报, 2002, 31(6):65-67.
[11] Nie B S, He X Q, Wang E Y, et al. Study on electromagnetic radiation and acoustic emission in shearing process of coal[J]. Journal of China University of Mining & Technology, 2002, 31(6):65-67.
[12] 万国香. 应力波作用下岩石电磁辐射与声发射特性研究[D]. 长沙:中南大学, 2008.
[12] Wan G X. Study on the characteristics of the electromagnetic emission and acoustic emission in rock under stress wave[D]. Changsha: Central South University, 2008.
[13] Obert L. Use of subaudible noises for the prediction of rock bursts[R]. U.S. Bureau of Mines, 1941:1-4.
[14] 唐春安. 岩石声发射规律数值模拟初探[J]. 岩石力学与工程学报, 1997,(4):75-81.
[14] Tang C A. Numerical simulation of ae in rock failure[J]. Chinese Journal of Rock Mechanics and Engineering, 1997,(4):75-81.
[15] 张国凯, 李海波, 王明洋, 等. 脆性岩石应力-应变全过程声学特征演化规律[J]. 中南大学学报:自然科学版, 2019, 50(8):1971-1980.
[15] Zhang G K, Li H B, Wang M Y, et al. Evolution rule of acoustic characteristics of brittle rocks during whole stress-strain process[J]. Journal of Central South University:Science and Technology, 2019, 50(8):1971-1980.
[16] 赵伏军, 李玉, 陈珂, 等. 岩石破碎声发射和电磁辐射特征试验研究[J]. 地下空间与工程学报, 2019, 15(2):345-351,364.
[16] Zhao F J, Li Y, Chen K, et al. Experimental research on characteristics of acoustic electrical signal of rock fragmentation[J]. Chinese Journal of Underground Space and Engineering, 2019, 15(2):345-351,364.
[17] 曹惠馨, 钱书清, 吕智. 岩石破裂过程中超长波段的电、磁信号和声发射的实验研究[J]. 地震学报, 1994, 16(2):235-241.
[17] Cao H Q, Qian S Q, Lyu Z. Experimental study on Electrical and magnetic signals and acoustic emission of ultra long wave band in the process of rock fracture[J]. Acta Seismologica Sinica, 1994, 16(2):235-241.
[18] Yamada I, Masuda K, Mizutani H. Electromagnetic and acoustic emission associated with rock fracture[J]. Physics of the Earth and Planetary Interiors, 1989, 57(1-2):1-168.
doi: 10.1016/0031-9201(89)90207-0
[19] 郭自强, 郭子祺, 钱书清, 等. 岩石破裂中的电声效应[J]. 地球物理学报, 1999, 42(1):74-83.
[19] Guo Z Q, Guo Z Q, Qian S Q, et al. Electro-acoustic effect in rock fracturing[J]. Chinese Journal of Geophysics, 1999, 42(1):74-83.
[20] 徐为民, 童芜生, 吴培稚. 岩石破裂过程中电磁辐射的实验研究[J]. 地球物理学报, 1985, 28(2):181-190.
[20] Xu W M, Tong W S, Wu P Z. Experimental study of electromagnetic emission during rock fracture[J]. Chinese Journal of Geophysics, 1985, 28(2):181-190.
[21] 王恩元, 何学秋. 煤岩变形破裂电磁辐射的实验研究[J]. 地球物理学报, 2000, 43(1):131-137.
[21] Wang E Y, He X Q. An experimental study of the electromagnetic emission during the deformation and fracture of coal or rock[J]. Chinese Journal of Geophysics, 2000, 43(1):131-137.
[22] Yoshida S, Manjgaladze P, Zilpimiani D, et al. Electromagnetic emissions associated with frictional sliding of rock[C]// Hayakawa M, Fujinawa Y(Eds). Electromagnetic Phenomena related to earthquake prediction terra. Tokyo: Scientific Publishing Company, 1994:307-322.
[23] Gokhberg M B. Static model of distributed emitters[J]. Transactions(Doklady) of USSR academy of sciences: Earth Science Section, 1988, 302(5):1-3.
[24] 刘煜洲, 刘因, 王寅生, 等. 岩石破裂时电磁辐射的影响因素和机理[J]. 地震学报, 1997, 19(4):83-90.
[24] Liu Y Z, Liu Y, Wang Y S, et al. Influencing factors and mechanism of electromagnetic radiation in rock fracture[J]. Acta Seismologica Sinica, 1997, 19(4):83-90.
[25] Huang Q H. One possible generation mechanism of co-seismic electric signals[J]. The Japan Academy, 2002, 78(7).
[26] 刘志祥. 冲击载荷作用下花岗岩产生的电磁辐射研究[D]. 北京:北京理工大学, 2017.
[26] Liu Z X. Electromagnetic emissions of granite induced by the impact loads[D]. Beijing: Beijing Institute of Technology, 2017.
[27] 李夕兵, 古德生. 应力波和电磁波在岩体中相互耦合的研究[J]. 中南矿冶学院学报, 1992, 23(8):260-266.
[27] Li X B, Gu D S. The investigation on the couplings of stress wave and electromagnetic wave in rocks[J]. Journal of Central South University, 1992, 23(8):260-266.
[28] 王秀琨, 王寅生. 岩石压电性[J]. 物探与化探, 1985, 9(4):274-280.
[28] Wang X K, Wang Y S. Piezoelectricity of rocks[J]. Geophysical and Geochemical Exploration, 1985, 9(4):274-280.
[29] 宋道仁, 肖鸣山. 压电效应及其应用[M]. 北京: 科学普及出版社, 1987.
[29] Song D R, Xiao M S. Piezoelectric effect and its application[M]. Beijing: Science and Technology of China Press, 1987.
[30] 奥尔特. 固体中的声场和波[M]. 孙承平, 译. 北京: 科学出版社, 1982.
[30] Auld B A. Acoustic fields and waves in solids[M]. Sun C P. Beijing: Science Press, 1982.
[31] 杨儒贵. 电磁场与电磁波[M]. 北京: 高等教育出版社, 2010:205-208.
[31] Yang R G. Electromagnetic fields and waves[M]. Beijing: Higher Education Press, 2010:205-208.
[32] Rabinovitch A, Frid V, Bahat D. Parametrization of electromagnetic radiation pulses obtained by triaxial fracture of granite samples[J]. Philosophical Magazine Letters, 1998, 77(5):289-293.
doi: 10.1080/095008398178444
[33] 李夕兵, 万国香, 周子龙. 岩石破裂电磁辐射频率与岩石属性参数的关系[J]. 地球物理学报, 2009, 52(1):253-259.
[33] Li X B, Wan G X, Zhou Z L. The relation between the frequency of electromagnetic radiation (EMR) induced by rock fracture and attribute parameters of rock masses[J]. Chinese Journal of Geophysics, 2009, 52(1):253-259.
[1] 周钟航, 张莹莹. 山峰对电性源地面瞬变电磁响应的影响及校正方法[J]. 物探与化探, 2023, 47(5): 1236-1249.
[2] 邢涛, 王垚, 李建慧. 基于B样条插值的瞬变电磁响应一维精确计算[J]. 物探与化探, 2023, 47(5): 1316-1325.
[3] 吴国培, 张莹莹, 赵华亮, 周钟航, 李医滨. 基于横向约束的中心回线瞬变电磁一维反演[J]. 物探与化探, 2023, 47(4): 1024-1032.
[4] 张阳阳, 杜威, 王芝水, 缪旭煌, 张翔. 基于Lévay飞行的粒子群算法在大地电磁反演中的应用[J]. 物探与化探, 2023, 47(4): 986-993.
[5] 但光箭, 周成刚, 刘云宏, 李相文, 张亮亮, 张明, 王春阳. 轮古西地区奥陶系碳酸盐岩古暗河系统地震特征分析[J]. 物探与化探, 2023, 47(2): 290-299.
[6] 张入化, 张洞君, 黄建平, 苟其勇, 周嘉妮. 基于LSCG法和波数补偿的频率域二维地震正演模拟方法[J]. 物探与化探, 2023, 47(2): 384-390.
[7] 罗术, 陈争玉, 蓝宇骋, 刘阳飞, 段明杰. 等值反磁通瞬变电磁法探测滑坡堆积体的应用[J]. 物探与化探, 2023, 47(2): 523-529.
[8] 赵军, 孟欣佳, 李冰, 刘志民. 坑道聚焦直流激电法电流场分布特性及探测影响因素分析[J]. 物探与化探, 2023, 47(1): 120-128.
[9] 孙海川, 王文忠, 李治中, 刘永亮. 多激励源瞬变电磁探测方法在煤矿采空区的应用[J]. 物探与化探, 2022, 46(5): 1306-1314.
[10] 谢锐, 阎建国, 陈琪. 叠前各向异性系数反演及在裂缝预测中的应用[J]. 物探与化探, 2022, 46(4): 968-976.
[11] 石泽玉, 张志厚, 刘鹏飞, 范祥泰. 重力及其梯度异常正演的Moving-footprint大尺度模型分解方法[J]. 物探与化探, 2022, 46(3): 576-584.
[12] 张德明, 刘志刚, 臧殿光, 廖显锋, 刘志毅, 刘国宝. 基于叠前同时反演的致密砂岩储层预测及含气性识别——以苏里格S区块为例[J]. 物探与化探, 2022, 46(3): 645-652.
[13] 赵友超, 张军, 范涛, 姚伟华, 杨洋, 孙怀凤. 地—井瞬变电磁三维响应特征分析与异常体快速定位方法研究[J]. 物探与化探, 2022, 46(2): 383-391.
[14] 冯鑫. 平点技术在西非深水碎屑岩储层烃检中的应用[J]. 物探与化探, 2022, 46(2): 433-443.
[15] 钟华, 唐新功. CSAMT一维正演可视化设计与激发极化效应[J]. 物探与化探, 2022, 46(2): 459-466.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com