Please wait a minute...
E-mail Alert Rss
 
物探与化探  2023, Vol. 47 Issue (2): 540-546    DOI: 10.11720/wtyht.2023.1225
  工程勘察 本期目录 | 过刊浏览 | 高级检索 |
等值反磁通瞬变电磁法在金矿采空区探测中的应用
任喜荣(), 李欣, 周志杰
甘肃省地质矿产勘查开发局 第二地质矿产勘查院,甘肃 兰州 730020
Application of the opposing coils transient electromagnetic method in investigation of mined-out areas of a gold deposit
REN Xi-Rong(), LI Xin, ZHOU Zhi-Jie
No.2 Exploration Institute of Geological and Mineral Resources,Gansu Bureau of Geological and Minerals Exploration,Lanzhou 730020,China
全文: PDF(5274 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

甘肃省玛曲县大水金矿是西秦岭地区的典型矿山之一,由于矿山的连年持续开采,导致在5号、9号高陡边坡下方形成一系列不同埋深的采空区,引起局部地面塌陷,存在较大安全隐患,根据环保及安全方面的要求,急需查明隐伏塌陷的空间展布特征,有效预防地质灾害的发生。本次研究采用等值反磁通瞬变电磁勘探技术,通过对勘察区典型断面图异常特征的精细解释,结合勘察区水文地质、基础地质等资料的综合分析,进而实现矿山隐伏塌陷的透明化、立体化。研究结果表明:利用等值反磁通瞬变电磁法(OCTEM)进行地下采空区探测,能够较好地反映采空区隐伏地层的岩性电性特征,并且采空区与围岩的物性差异明显,可有效查明地下采空区的空间位置及基本形态特征。同时基于多勘探线物探剖面采空区边界特征点数据,结合计算机三维建模技术,可实现采空区空间形态三维可视化,透视采空区的立体特征。等值反磁通瞬变电磁法的实施效果及三维建模技术为矿山恢复治理及安全评价提供了技术依据,可以有效服务于数字矿山的建设。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
任喜荣
李欣
周志杰
关键词 等值反磁通瞬变电磁法采空区金属矿山三维建模    
Abstract

The Dashui gold deposit in Maqu County,Gansu Province is a typical mine of the western Qinling region.Owing to continuous mining,many mined-out areas have been formed at different depths below high and steep slopes No.5 and 9,causing local surface collapse and major safety hazards.According to the requirements for environmental protection and safety,there is an urgent need to determine the spatial distribution of concealed collapse to effectively prevent geological disasters.Using the opposing coils transient electromagnetic method (OCTEM),this study conducted the fine-scale interpretation of the anomalies on the typical sections of the exploration area.Based on this,as well as the comprehensive analysis of the hydrogeological data and basic geological data of the exploration area,this study determined the transparent and three-dimensional distribution of the concealed collapse of the Dashui gold deposit.The results of this study show that the subsurface investigation of mined-out areas using the OCTEM can effectively reveal the lithologic and electrical characteristics of concealed strata in mined-out areas.Moreover,the significantly different physical properties between mined-out areas and surrounding rocks can be used to effectively identify the locations and basic morphologies of subsurface mined-out areas.The data on the boundary characteristic points of the mined-out areas on geophysical profiles with multiple exploration lines and three-dimensional modeling allow for the three-dimensional visualization of the spatial morphology of the mined-out areas.The application performance of the OCTEM,along with three-dimensional modeling,provides a technical basis for mine restoration and safety evaluation,thus effectively serving the construction of digital mines.

Key wordsopposing coils transient electromagnetic method(OCTEM)    mined-out area    metal mine    3D modeling
收稿日期: 2022-05-19      修回日期: 2023-02-13      出版日期: 2023-04-20
ZTFLH:  P631.4  
基金资助:甘肃省基金项目“甘肃省武山县洛门南地热资源普查”(201904-D10);内蒙古自治区基金项目“内蒙古自治区乌拉特后旗那仁铅银多金属矿预查”(13-4-kc08);“内蒙古自治区乌拉特后旗帮帮熬瑞—呼和赛日铜钨金多金属矿预查”(13-4-kc42)
引用本文:   
任喜荣, 李欣, 周志杰. 等值反磁通瞬变电磁法在金矿采空区探测中的应用[J]. 物探与化探, 2023, 47(2): 540-546.
REN Xi-Rong, LI Xin, ZHOU Zhi-Jie. Application of the opposing coils transient electromagnetic method in investigation of mined-out areas of a gold deposit. Geophysical and Geochemical Exploration, 2023, 47(2): 540-546.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2023.1225      或      https://www.wutanyuhuatan.com/CN/Y2023/V47/I2/540
Fig.1  OCTEM装置示意
Fig.2  电流环磁场计算柱坐标
Fig.3  OCTEM双线圈源合成的一次场磁力线示意
岩性 样品数 电阻率最小~最
大值/(Ω·m)
电阻率几何平
均值/(Ω·m)
电性
特征
细沙(充水) 6 1.3~6.6 2.1 低阻
红黏土 11 20.8~43.7 29 低阻
泥岩 10 43.1~80.3 60.7 低阻
细沙(含泥) 8 16.8~115.6 61.7 低阻
砂岩(破碎) 7 55.2~77.4 63.6 低阻
粉土 12 90.8~239.7 162.3 低阻
溶蚀灰岩(含水) 15 103.9~405.5 205.9 低阻
细沙 2 270.9~271.2 271.1 低阻
砂岩(板状) 5 329.4~455.1 376.5 低阻
含泥砾石 13 423.0~654.6 506.7 中等
腐殖土 8 396.7~865.7 560 中等
砂岩(块状) 3 772.8~779.3 776.1 中等
溶蚀灰岩 6 947.7~1486.5 1159.7 中等
砾岩 18 334.4~3860.7 1164.2 中等
砂砾石 9 1154.4~1410.9 1239.3 中等
灰岩 14 9019.8~17612.3 11938.9 高阻
结晶灰岩 9 11358.7~27581.3 16680.4 高阻
Table 1  勘察区野外露头岩石电性参数统计
Fig.4  大水金矿矿区地质
Fig.5  3455-CQ89采空区瞬变电磁剖面联合反演电阻率断面
Fig.6  采空区三维可视化建模示意
a—边界坐标建立线;b—断面间插值采空区边界线;c—创建采空区起伏表面;d—单个采空区三维模型
Fig.7  采空区三维可视化模型
[1] 张卫雄, 王有权, 庄飞舟, 等. 甘肃玛曲格萨尔黄金实业股份有限公司大水金矿矿产资源开发与恢复治理方案[R]. 甘肃玛曲格萨尔黄金实业股份有限公司, 2018.
[1] Zhang W X, Wang Y Q, Zhuang F Z, et al. Mineral resources development and restoration treatment scheme of Dashui Gold Mine of Gansu Maqu Gesar Gold Industry Co.Ltd.[R]. Gansu Maqu Gesar Gold Industry Co. Ltd., 2018.
[2] 辛静. 等值反磁通瞬变电磁法在浅部采空区探测中的应用[J]. 工程地球物理学报, 2019, 16(5):718-722.
[2] Xin J. The application of opposing coils transient electromagnetic method to detect shallow goaf[J]. Chinese Journal of Engineering Geophysics, 2019, 16(5):718-722.
[3] 李貅. 瞬变电磁测深的理论与应用[M]. 西安: 陕西科学技术出版社, 2002.
[3] Li X. Theory and application of transient electromagnetic sounding[M]. Xi'an: Shaanxi Science and Technology Press, 2002.
[4] 薛国强, 李貅, 底青云. 瞬变电磁法理论与应用研究进展[J]. 地球物理学进展, 2007, 22(4):195-200.
[4] Xue G Q, Li X, Di Q Y. The progess of TEM in theory and application[J]. Progress in Geophysics, 2007, 22(4):195-200.
[5] 孔详儒. 电磁感应研究的进展与展望[J]. 地球物理学进展, 1992, 7(2):11-14.
[5] Kong X R. The advance and prospect of the earth's electromagnetic induction study[J]. Progress in Geophysics, 1992, 7(2):11-14.
[6] 嵇艳鞠, 林君, 于生宝, 等. ATTEM系统中电流关断期间瞬变电磁场响应求解的研究[J]. 地球物理学报, 2006, 49(6):1884-1890.
[6] Ji Y J, Lin J, Yu S B, et al. A study on solution of transient electromagnetic response during transmitting current turn-off in the ATTEM system[J]. Chinese Journal Geophysics, 2006, 49(6):1884-1890.
[7] 席振铢, 龙霞, 周胜, 等. 基于等值反磁通原理的浅层瞬变电磁法[J]. 地球物理学报, 2016, 59(9):3428-3435.
[7] Xi Z Z, Long X, Zhou S, et al. Opposing coils transient electromagnetic method for shallow subsurface detection[J]. Chinese Journal Geophysics, 2016, 59(9):3428-3435.
[8] 席振铢, 宋刚, 周胜, 等. 一种瞬变电磁测量装置及方法[P]. 中国专利,201410092714X,2014-03-14.
[8] Xi Z Z, Song G, Zhou S, et al. A transient electromagnetic measuring device and method[P] .China Patent, 201410092714X,2014-03-14.
[9] Jackson J D. Chassical electrodynamics[M]. New York: Wiley, 1962.
[10] 周超, 赵思为. 等值反磁通瞬变电磁法在煤窑采空区中的应用[C]// 北京: 2018国际地球物理会议暨展览, 2018:1406-1409.
[10] Zhou C, Zhao S W. Application of opposing coils transient electromagnetic method in coal mine goaf[C]// Beijing:2018 International Geophysical Conference and Exhibition, 2018:1406-1409.
[11] 杨建明, 王洪昌, 沙椿. 基于等值反磁通瞬变电磁法的岩溶探测分析[J]. 物探与化探, 2018, 42(4):846-850.
[11] Yang J M, Wang H C, Sha C. An analysis of karst exploration based on opposing coils transient electromagnetic method[J]. Geophysical and Geochemical Exploration, 2018, 42(4):846-850.
[12] 彭星亮, 席振铢, 王鹤, 等. 等值反磁通瞬变电磁法在地质灾害探测中的应用对比[J]. 西部探矿工程, 2018, 30(8):147-150,153.
[12] Peng X L, Xi Z Z, Wang H, et al. Comparison of application of opposing coils transient electromagnetic method in geological disaster detection[J]. Western Exploration Project, 2018, 30(8):147-150,153.
[13] 高远. 等值反磁通瞬变电磁法对石膏矿采空区的探测分析[J]. 物探与化探, 2019, 43(6):1404-1408.
[13] Gao Y. The application effect on detecting goaf of gypsum mine by opposing coils transient electromagnetics method[J]. Geophysical and Geochemical Exploration, 2019, 43(6):1404-1408.
[14] 雷宛, 肖宏跃, 邓一谦. 工程与环境物探教程[M]. 北京: 地质出版社, 2006.
[14] Lei W, Xiao H Y, Deng Y Q. Engineering and environmental geophysical exploration Tutorial[M]. Beijing: Geological Publishing House, 2006.
[15] 赖耀发, 席振铢, 张峰, 等. 等值反磁通瞬变电磁电阻率谱系法探测铝土矿[J]. 中南大学学报:自然科学版, 2021, 52(9):3264-3272.
[15] Lai Y F, Xi Z Z, Zhang F, et al. Application of opposing coils transient electromagnetic resistivity spectrum method to detect bauxite deposits[J]. Journal of Central South University:Science and Technology, 2021, 52(9):3264-3272.
[16] 孙怀凤, 吴启龙, 陈儒军, 等. 浅层岩溶瞬变电磁响应规律试验研究[J]. 岩土力学与工程学报, 2018, 37(3):652-661.
[16] Sun H F, Wu Q L, Chen R J, et al. Experimental study on transient electromagnetic responses to shallow karst[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(3):652-661.
[17] 赵东东, 陈基炜, 宗全兵, 等. 等值反磁通瞬变电磁法在地铁盾构孤石探测中的应用[J]. 工程地球物理学报, 2021, 18(4):495-502.
[17] Zhao D D, Chen J W, Zong Q B, et al. Application of opposing coils transient electromagnetic method in metro shielding boulder detection[J]. Chinese Journal of Engineering Geophysics, 2021, 18(4):495-502.
[1] 张帆, 冯国瑞, 戚庭野, 余传涛, 张新军, 王超宇, 杜孙稳, 赵德康. 瞬变电磁法勘探煤矿不同层间距双层积水采空区的可行性研究[J]. 物探与化探, 2023, 47(5): 1215-1225.
[2] 何胜, 王万平, 董高峰, 南秀加, 魏丰丰, 白勇勇. 等值反磁通瞬变电磁法在城市地质调查中的应用[J]. 物探与化探, 2023, 47(5): 1379-1386.
[3] 罗术, 陈争玉, 蓝宇骋, 刘阳飞, 段明杰. 等值反磁通瞬变电磁法探测滑坡堆积体的应用[J]. 物探与化探, 2023, 47(2): 523-529.
[4] 余长恒, 郑健, 张旭林, 周昊, 王安平, 刘磊, 李易. 川南地区页岩气井平台钻前工程物探集成技术[J]. 物探与化探, 2023, 47(1): 99-109.
[5] 孙海川, 王文忠, 李治中, 刘永亮. 多激励源瞬变电磁探测方法在煤矿采空区的应用[J]. 物探与化探, 2022, 46(5): 1306-1314.
[6] 王强, 田野, 刘欢, 朱春光, 白超琨, 郝森. 综合物探方法在煤矿采空区探测中的应用[J]. 物探与化探, 2022, 46(2): 531-536.
[7] 张建智, 胡富杭, 刘海啸, 邢国章. 煤矿老窑采空区地—井TEM响应特征[J]. 物探与化探, 2022, 46(1): 191-197.
[8] 赵旭辰, 李雪健, 曹芳智, 雷晓东, 李晨, 韩宇达. 井间电磁波CT在煤矿采空区探测效果分析[J]. 物探与化探, 2021, 45(4): 1088-1094.
[9] 裴肖明, 冯国瑞, 戚庭野. 瞬变电磁法探测复杂状态下煤矿充水采空区物理模拟实验[J]. 物探与化探, 2021, 45(4): 1055-1063.
[10] 陈健强, 李雁川, 田浩, 李汉超. 含水采空区全空间瞬变电磁响应分析[J]. 物探与化探, 2021, 45(2): 546-550.
[11] 周月, 官大维, 延海涛, 张小龙. 基于先验信息约束的重磁电联合三维交互反演技术实践——以彭山穹隆构造为例[J]. 物探与化探, 2021, 45(2): 308-315.
[12] 魏海民, 李星, 孙帮涛, 周胜, 牛杰. 地球物理方法在帷幕注浆治水中的探测分析[J]. 物探与化探, 2021, 45(1): 245-251.
[13] 陈大磊, 陈卫营, 郭朋, 王润生, 王洪军, 张超, 马启合, 贺春燕. SOTEM法在城镇强干扰环境下的应用——以坊子煤矿采空区为例[J]. 物探与化探, 2020, 44(5): 1226-1232.
[14] 张来福, 李士强, 刘国强, 杨虹, 田赟, 李国栋. 输电杆塔下采空区电法探测电极系统设计[J]. 物探与化探, 2020, 44(1): 220-225.
[15] 高远. 等值反磁通瞬变电磁法对石膏矿采空区的探测分析[J]. 物探与化探, 2019, 43(6): 1404-1408.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com