Please wait a minute...
E-mail Alert Rss
 
物探与化探  2022, Vol. 46 Issue (5): 1289-1295    DOI: 10.11720/wtyht.2022.1467
  工程勘察 本期目录 | 过刊浏览 | 高级检索 |
等值反磁通瞬变电磁法在城市浅层空洞探测中的应用
王亮1(), 龙霞1, 王婷婷2, 席振铢2, 陈兴朋1, 钟明峰2, 董志强1
1.湖南五维地质科技有限公司,湖南 长沙 410083
2.中南大学 地球科学与信息物理学院,湖南 长沙 410083
Application of the opposing-coils transient electromagnetic method in detection of urban shallow cavities
WANG Liang1(), LONG Xia1, WANG Ting-Ting2, XI Zhen-Zhu2, CHEN Xing-Pen1, ZHONG Ming-Feng2, DONG Zhi-Qiang1
1. Hunan 5D Geosciences Co. Ltd., Changsha 410083, China
2. School of Geosciences and Info-Physics, Central South University, Changsha 410083, China
全文: PDF(2531 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

快速高效地查明城市中引起地面塌陷的隐患,对于城市建设、灾害防护及保护人民财产具有重要意义。将城市浅层地面塌陷归纳为3类:溶蚀作用造成的空洞塌陷、无序抽排地下水造成的土洞塌陷以及人防工程老旧空洞塌陷,通过正演计算,研究分析了3类空洞地质模型的等值反磁通瞬变电磁响应规律,以及各模型分别在高阻和低阻覆盖层下的衰减曲线的变化特征;利用岩石的瞬变电磁响应变化率分析了各类空洞地质模型的电性特征。正演结果表明:溶蚀空洞模型和土洞模型与围岩相比呈低阻特性,人防空洞模型呈高阻特性;3种模型的瞬变电磁响应变化率表明等值反磁通技术对各类空洞隐患均具有较好的识别能力。将等值反磁通瞬变电磁法应用于昆明、郑州等地的3类空洞探测,结果证明该方法对城市浅部空洞探测是行之有效的。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王亮
龙霞
王婷婷
席振铢
陈兴朋
钟明峰
董志强
关键词 城市地质等值反磁通瞬变电磁浅层空洞地面塌陷    
Abstract

Quickly and efficiently identifying the hidden dangers inducing ground collapse in cities are greatly significant for urban construction, disaster protection, and protection of people's properties. In this study, the urban shallow ground collapse was classified into cavities caused by dissolution, disorderly drainage of groundwater, and old civil air defense works. Through forward calculations, this study analyzed the response laws of the geological models of the three types of cavities using the opposing-coils transient electromagnetic method (OCTEM), as well as the various characteristics of attenuation curves of the models under high resistance and low resistance overburden strata. Moreover, this study investigated the electrical characteristics of the geological models of the three types of cavities using the rate of change in the transient electromagnetic responses of rocks. The forward results are as follows. Compared with the surrounding rocks, both the models of cavities caused by dissolution and disorderly drainage of groundwater showed low resistance characteristics, while the model of cavities caused by civil air defense works showed high resistance characteristics. The rates of change in the transient electromagnetic responses of the three models show that the opposing-coils technology has a good ability to identify the hidden dangers inducing all kinds of cavities. The application results of the OCTEM to the detection of three types of cavities in areas such as Kunming and Zhengzhou show that this method is effective for the detection of urban shallow cavities.

Key wordsurban geology    OCTEM    shallow cavity    ground collapse
收稿日期: 2021-08-24      修回日期: 2022-01-11      出版日期: 2022-10-20
ZTFLH:  P631  
基金资助:国家重点研发计划课题(2016YFC0303104)
作者简介: 王亮(1989-),男,硕士,从事电磁法勘探应用与正反演算法研究工作。Email: 353240527@qq.com
引用本文:   
王亮, 龙霞, 王婷婷, 席振铢, 陈兴朋, 钟明峰, 董志强. 等值反磁通瞬变电磁法在城市浅层空洞探测中的应用[J]. 物探与化探, 2022, 46(5): 1289-1295.
WANG Liang, LONG Xia, WANG Ting-Ting, XI Zhen-Zhu, CHEN Xing-Pen, ZHONG Ming-Feng, DONG Zhi-Qiang. Application of the opposing-coils transient electromagnetic method in detection of urban shallow cavities. Geophysical and Geochemical Exploration, 2022, 46(5): 1289-1295.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2022.1467      或      https://www.wutanyuhuatan.com/CN/Y2022/V46/I5/1289
Fig.1  等值反磁通瞬变电磁法中心回线装置示意
Fig.2  空洞模型示意
模型
编号
空洞大小
(m×m)
空洞
类型
L/m ρ覆盖层/
(Ω·m)
ρ背景/
(Ω·m)
模型0 0×0 100/1000 300
模型1 2.5×2.5 溶蚀型 2.5 100 300
模型2 2.5×2.5 土洞 0.5 100 300
模型3 2.5×2.5 人防空洞 0.5 100 300
模型4 2.5×2.5 溶蚀型 2.5 1000 300
模型5 2.5×2.5 土洞 0.5 1000 300
模型6 2.5×2.5 人防空洞 0.5 1000 300
Table 1  计算的各模型参数值
Fig.3  100 Ω·m覆盖层下各模型响应曲线
Fig.4  100 Ω·m覆盖层下各模型的m曲线
Fig.5  不同覆盖层的各模型响应
Fig.6  昆明某轨道交通岩溶探测成果
Fig.7  郑州市某道路塌陷探测现场(a)及反演结果(b)
Fig.8  防空洞露头(a)及OCTEM实测曲线(b)
Fig.9  防空洞OCTEM反演电阻率断面
[1] 陈灿华, 廖秀英, 陈绍裘. 高速公路不同地层路基中岩溶洞穴的探测[J]. 中南大学学报:自然科学版, 2004, 35(6):1014-1018.
[1] Chen C H, Liao X Y, Chen S Q. Explore karst in different strata of highway roadbed[J]. Chinese J. Journal of Central South University:Science and Technology, 2004, 35(6): 1014-1018.
[2] 袁永才, 李术才, 李利平, 等. 尚家湾强岩溶隧道突水突泥伴生灾害源综合分析[J]. 中南大学学报:自然科学版, 2017, 48(1):203-211.
[2] Yuan Y C, Li S C, Li L P, et al. Comprehensive analysis on disaster associated by water inrush and mud gushing in Shangjiawan karst tunnel[J]. Chinese J. Journal of Central South University:Science and Technology, 2017, 48(1): 203-211.
[3] Konstantinos C, Valérie P, Roger G, et al. Contribution of geophysical methods to karst-system exploration: An overview[J]. Hydrogeology Journal, 2011, 19(6):1169-1180.
doi: 10.1007/s10040-011-0746-x
[4] Ŝumanovac F, Weisser M. Evaluation of resistivity and seismic methods for hydrogeological mapping in karst terrains[J]. Journal of Applied Geophysics, 2001, 47(1):13-28.
doi: 10.1016/S0926-9851(01)00044-1
[5] 李才明, 王良书, 徐鸣洁, 等. 基于小波能谱分析的岩溶区探地雷达目标识别[J]. 地球物理学报, 2006, 49(5):1499-1504.
[5] Li C M, Wang L S, Xu M J, et al. Objects recognition of ground penetrating radar in karst regions using wavelet energy spectrum analysis[J]. Chinese Journal Geophysics, 2006, 49(5): 1499-1504.
[6] 孙怀凤, 李凯, 陈儒军, 等. 浅层岩溶瞬变电磁响应规律试验研究[J]. 岩石力学与工程学报, 2018, 37(3):652-661.
[6] Sun H F, Li K, Chen R J, et al. Experimental study on transient electromagnetic responses to shallow karst[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(3): 652-661.
[7] 牛之琏. 时间域电磁法原理[M]. 长沙: 中南大学出版社, 2007:69-70.
[7] Niu Z L. Theory of time domain electromagnetic[M]. Changsha: Zhongnan University Press, 2007:69-70.
[8] 李貅. 瞬变电磁测深的理论与应用[M]. 西安: 陕西科学技术出版社, 2002:5-8.
[8] Li X. Theory and application of transient electromagnetic sounding[M]. Xi’an: Shanxi Science and Technology Press, 2002:5-8.
[9] 席振铢, 刘剑, 龙霞, 等. 瞬变电磁法三分量测量方法研究[J]. 中南大学学报:自然科学版, 2010, 41(1):272-276.
[9] Xi Z Z, Liu J, Long X, et al. Three-component measurement intransient electromagnetic method[J]. Journal of Central South University: Science and Technology, 2010, 41(1): 272-276.
[10] Nabighian M N, Macnae J C. Time domain electromagnetic prospecting methods: Electromagnetic methods in applied geophysics[M]. Houston: Society of Exploration Geophysicist, 1988:427-520.
[11] Xi Z Z, Long X, Huang L, et al. Opposing-coils transient electromagnetic method focused near-surface resolution[J]. Geophysics, 2019, 81(5): E279-E285.
doi: 10.1190/geo2014-0564.1
[12] 席振铢, 龙霞, 周胜, 等. 基于等值反磁通原理的浅层瞬变电磁法[J]. 地球物理学报, 2016, 59(9):3428-3435.
[12] Xi Z Z, Long X, Zhou S, et al. Opposing coils transient electromagnetic method for shallow subsurface detection[J]. Chinese Journal Geophysics, 2016, 59(9): 3428-3435.
[13] 席振铢, 宋刚, 周胜, 等. 一种瞬变电磁测量装置及方法[P]. 中国专利, 201410092714.X, 2014.
[13] Xi Z Z, Song G, Zhou S, et al. A measure method and device of transient electromagnetic method[P]. Patent in Chinese, 201410092714.X, 2014.
[14] 李建平. 等值反磁通瞬变电磁法在高山隧道施工选线中的应用[J]. 兰州理工大学学报, 2018(1):143-147.
[14] Li J P. Application of opposing coils electromagnetometry in route selection for alpine tunnel construction[J]. Journal of Lanzhou University of Technology, 2018(1): 143-147.
[15] 赖刘保, 陈昌彦, 张辉, 等. 浅层瞬变电磁法在城市道路地下病害检测中的应用[J]. 地球物理学进展, 2016, 31(6):2743-2746.
[15] Lai L B, Chen C Y, Zhang H, et al. Application of shallow transient electromagnetic method in the detection of city road disease[J]. Progress in Geophysics, 2016, 31(6): 2743-2746.
[16] 王银, 席振铢, 蒋欢, 等. 等值反磁通瞬变电磁法在探测岩溶病害中的应用[J]. 物探与化探, 2017, 41(2):360-363.
[16] Wang Y, Xi Z Z, Jiang H, et al. The application research on the detection of karst disease of airport runway based on OCTEM[J]. Geophysical and Geochemical Exploration, 2017, 41(2): 360-363.
[17] Coggon J H. Electromagnetic and electrical modeling by the finite element method[J]. Geophysics, 1970, 36: 132-153.
doi: 10.1190/1.1440151
[18] 陈丹丹. 瞬变电磁法三维正演研究[D]. 北京: 中国地质大学(北京), 2008.
[18] Chen D D. Study of three-dimensional forward of TEM[D]. Beijing: China University of Geosciences (Beijing), 2008.
[19] 李贺. 直接时间域矢量有限元瞬变电磁三维正演模拟[D]. 西安: 长安大学, 2016.
[19] Li H. Three-dimensional transient electromagnetic forward modeling in the direct time-domain by vector finite element[D]. Xi'an: Chang'an University, 2016.
[20] 余翔, 王绪本, 李新均, 等. 时域瞬变电磁法三维有限差分正演技术研究[J]. 地球物理学报, 2017, 60(2):810-819.
[20] Yu X, Wang X B, Li X J, et al. Three-dimensional finite difference forward modeling of the transient electromagnetic method in the time domain[J]. Chinese Journal Geophysics, 2017, 60(2): 810-819.
[21] 李瑞雪, 王鹤, 席振铢, 等. 深海热液硫化物矿体3D瞬变电磁正演[J]. 地球物理学报, 2016, 59(12):4505-4512.
[21] Li R X, Wang H, Xi Z Z, et al. The 3D transient electromagnetic forward modeling of volcanogenic massive sulfide ore deposits[J]. Chinese Journal Geophysics, 2016, 59(12): 4505-4512.
[22] 孙怀凤, 程铭, 吴启龙, 等. 瞬变电磁三维FDTD正演多分辨网格方法[J]. 地球物理学报, 2018, 61(12):374-382.
[22] Sun H F, Cheng M, Wu Q L, et al. A multi-scale grid scheme in three-dimensional transient electromagnetic modeling using FDTD[J]. Chinese Journal Geophysics, 2018, 61(12): 374-382.
[23] 熊彬, 罗延钟. 电导率分块均匀的瞬变电磁2.5维有限元数值模拟[J]. 地球物理学报, 2006, 49(2):590-597.
[23] Xiong B, Luo Y Z. Finite element modeling of 2.5D TEM with block homogeneous conductivity[J]. Chinese Journal Geophysics, 2006, 49(2):590-597.
[24] Li W D. Modeling and inversion of time domain electromagnetic data[D]. SLC: The University of Utah, 2002.
[25] Key K. MARE2DEM: A 2-D inversion code for controlled-source electromagnetic and magnetotelluric data[J]. Geophys. J. Int., 2016, 207: 571-588.
doi: 10.1093/gji/ggw290
[1] 何胜, 王万平, 董高峰, 南秀加, 魏丰丰, 白勇勇. 等值反磁通瞬变电磁法在城市地质调查中的应用[J]. 物探与化探, 2023, 47(5): 1379-1386.
[2] 罗术, 陈争玉, 蓝宇骋, 刘阳飞, 段明杰. 等值反磁通瞬变电磁法探测滑坡堆积体的应用[J]. 物探与化探, 2023, 47(2): 523-529.
[3] 任喜荣, 李欣, 周志杰. 等值反磁通瞬变电磁法在金矿采空区探测中的应用[J]. 物探与化探, 2023, 47(2): 540-546.
[4] 张晓亮, 白凌燕, 倪敬波, 王志辉, 赵勇, 何付兵. 北京平原区隐伏断裂与氡浓度响应关系[J]. 物探与化探, 2022, 46(2): 344-351.
[5] 徐浩, 吴小平, 盛勇, 廖圣柱, 贾慧涛, 徐子桥. 微动勘探技术在城市地面沉降检测中的应用研究[J]. 物探与化探, 2021, 45(6): 1512-1519.
[6] 苏宝, 刘晓丽, 卫晓波, 高歌, 王云鹏. 井间超高密度电阻率法溶洞探测研究[J]. 物探与化探, 2021, 45(5): 1354-1358.
[7] 刘伟, 黄韬, 王庭勇, 刘怡, 张继, 刘文涛, 张琦斌, 李强. 综合物探方法在城市隐伏断裂探测中的应用[J]. 物探与化探, 2021, 45(4): 1077-1087.
[8] 陈基炜, 赵东东, 宗全兵, 张宝松, 邸兵叶, 朱红兵, 王佳龙. 基于线形台阵的高精度微动技术在城区岩性地层精细划分中的应用[J]. 物探与化探, 2021, 45(2): 536-545.
[9] 魏海民, 李星, 孙帮涛, 周胜, 牛杰. 地球物理方法在帷幕注浆治水中的探测分析[J]. 物探与化探, 2021, 45(1): 245-251.
[10] 高武平, 闫成国, 张文朋, 王志胜. 电阻率层析成像在沉积区隐伏断层探测中的应用[J]. 物探与化探, 2020, 44(6): 1352-1360.
[11] 刘杰, 段炜, 王俊, 刘成, 戴国强. 等值反磁通瞬变电磁法在公路隧道塌陷区的探测应用[J]. 物探与化探, 2020, 44(6): 1470-1475.
[12] 韩佳明, 仲鑫, 景帅, 刘平. 探地雷达在黄土地区城市地质管线探测中的应用[J]. 物探与化探, 2020, 44(6): 1476-1481.
[13] 陈实, 李延清, 李同贺, 金荣杰, 张静. 天然源面波技术在乌鲁木齐城市地质调查中的应用[J]. 物探与化探, 2019, 43(6): 1389-1398.
[14] 邓中俊, 杨玉波, 姚成林, 贾永梅, 李春风. 综合物探在地面塌陷区探测中的应用[J]. 物探与化探, 2019, 43(2): 441-448.
[15] 何育枫, 李晓娟, 佘继红, 陈晔, 徐礼鹏. 基于T-C-V架构的三维城市地质信息共享平台建设[J]. 物探与化探, 2018, 42(4): 804-810.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com