Please wait a minute...
E-mail Alert Rss
 
物探与化探  2022, Vol. 46 Issue (3): 668-677    DOI: 10.11720/wtyht.2022.1336
  地质调查·资源勘查 本期目录 | 过刊浏览 | 高级检索 |
复电阻率法在安徽南陵盆地海相页岩气勘探中的应用
殷启春1,2(), 王元俊1, 周道容1, 张丽3, 孙桐2
1.中国地质调查局 南京地质调查中心,江苏 南京 210016
2.中国地质调查局 哈尔滨自然资源综合调查中心,黑龙江 哈尔滨 150081
3.安徽省勘查技术院,安徽 合肥 230041
Application of complex resistivity method to the exploration of marine shale gas in the Nanling Basin, Anhui Province
YIN Qi-Chun1,2(), WANG Yuan-Jun1, ZHOU Dao-Rong1, ZHANG Li3, SUN Tong2
1. Nanjing Center, China Geological Survey, Nanjing 210016, China
2. Harbin Comprehensive Survey Center of Natural Resources, China Geological Survey, Harbin 150081, China
3. Geological Exploration Technology Institute of Anhui Province, Hefei 230041, China
全文: PDF(3471 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

安徽南陵盆地主体为中生代陆相红盆,红盆下海相地层分布不明,页岩气资源潜力不清。根据本区周边二叠系富有机质泥页岩储层含有黄铁矿的物性特征,选用复电阻率法开展页岩气地质调查工作。针对盆内、盆外不同地质特点设计合适的观测系统,采用Cole-Brown和Cole-Cole模型拟合反演,绘制近区场电磁电阻率和视充电率参数图。研究结果发现:①研究区二叠系富有机质泥页岩碳质含量高、富含黄铁矿颗粒,具有明显的“低电阻率、高极化率”特征,可以有效与其围岩区分,有利于开展复电阻率法勘探;②极化率是识别深部富有机质泥页岩地层乃至页岩气藏的有效参数;③根据复电阻率法勘探结果,实施钻孔验证,成功钻遇三叠系灰岩地层,并预测南陵盆地红盆下为二叠系页岩气藏有利区。本次研究表明了复电阻率法在南陵盆地可探测深达2 000 m以下累计厚度约200 m的含黄铁矿泥页岩地层,是电磁法勘探中唯一能直接指示页岩气藏的方法,可以适用于地质情况复杂的南陵盆地乃至中国南方海相页岩气地球物理勘探。本次勘探结果也为在南陵盆地进一步开展海相页岩气勘探提供了依据。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
殷启春
王元俊
周道容
张丽
孙桐
关键词 复电阻率法南陵盆地南方海相地区富有机质页岩页岩气勘探    
Abstract

The main part of the Nanling Basin in Anhui Province is a red Mesozoic continental basin, under which the distribution of marine strata is still undetermined and the potential of shale gas resources is unidentified. Based on the physical property characteristics that the Permian organic-rich shale reservoirs around the study area contain pyrite, this study carried out a geological survey of shale gas using the complex resistivity method. Specifically, this study designed an observation system suitable for the different geological characteristics inside and outside the basin, conducted fitting and inversion using Cole-Brown and Cole-Cole models, and plotted maps of near-field parameters electromagnetic resistivity and apparent charging rate. The results show that: (1) The Permian organic-rich shale contains high carbonaceous content and rich pyrite particles and has distinct characteristics of low resistivity and high polarizabi-lity. Therefore, it can be effectively distinguished from its surrounding rocks, which is favorable for the shale gas exploration using the complex resistivity method; (2) Polarizability is an effective parameter that can be used to identify deep organic-rich shale strata and even shale gas reservoirs; (3) Drilling tests were carried out based on the exploration results obtained using the complex resistivity method, successfully discovering the Triassic carbonate strata and predicting that below the red basin in the Nanling Basin is the favorable area of Permian shale gas reservoirs. This study demonstrates that the complex resistivity method can detect pyrite-bearing shale strata with a depth of greater than 2,000 m and a cumulative thickness of about 200 m in the Nanling Basin and is the only method that can directly indicate shale gas reservoirs in electromagnetic exploration. Therefore, the complex resistivity method can be applied to the geophysical prospecting of the marine shale gas in the Nanling Basin with complex geological conditions and even Southern China. The results of this exploration also provide a basis for the further exploration of the marine shale gas in the Nanling Basin.

Key wordscomplex resistivity method    Nanling Basin    marine shale in South China    organic-rich shale    shale gas geophysical prospecting
收稿日期: 2021-06-10      修回日期: 2022-01-15      出版日期: 2022-06-20
ZTFLH:  P631.1  
基金资助:中国地质调查局项目“苏皖地区页岩气地质调查”(DD20190083);“下扬子地区油气页岩气调查评价”(DD20221662)
作者简介: 殷启春(1977-),男,高级工程师;2010年毕业于中国科学院研究生院,主要从事地球物理勘探研究和非常规油气勘探评价工作。Email: yinqc@mail.cgs.gov.cn
引用本文:   
殷启春, 王元俊, 周道容, 张丽, 孙桐. 复电阻率法在安徽南陵盆地海相页岩气勘探中的应用[J]. 物探与化探, 2022, 46(3): 668-677.
YIN Qi-Chun, WANG Yuan-Jun, ZHOU Dao-Rong, ZHANG Li, SUN Tong. Application of complex resistivity method to the exploration of marine shale gas in the Nanling Basin, Anhui Province. Geophysical and Geochemical Exploration, 2022, 46(3): 668-677.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2022.1336      或      https://www.wutanyuhuatan.com/CN/Y2022/V46/I3/668
Fig.1  南陵盆地CR法测点分布
Fig.2  皖南地区二叠系泥页岩中黄铁矿分布照片
Fig.3  WYD1井电阻率测井曲线
地层 代号 主要岩性 标本数量 平均电阻率/(Ω·m) 电性分层
白垩系 K 粉砂岩、砂砾岩 282 182 低阻层
三叠系 T 灰岩、泥灰岩 1 163 848 高阻层
二叠系大隆组 P3d 页岩 65
二叠系龙潭组 P2l 页岩、煤 95
细砂岩 214 132 低阻层
二叠系孤峰组 P2g 页岩、泥岩 64
黑色含炭硅质岩 598
二叠系栖霞组 P1q 灰岩 4 059 1780 高阻层
石炭系 C 灰岩、白云岩 2 538
泥盆系五峰组 D3w 石英砂岩、细砂岩 875 450 中阻层
志留系高家边组 S1g 含泥页岩、泥岩
粉砂岩、泥岩、页岩
65
158
134 低阻层
Table 1  研究区地层综合电性分层统计
Fig.4  仪器与观测系统配置
Fig.5  CR法数据处理流程
Fig.6  CR法反演电磁电阻率(a)、充电率(b)断面及地质解释
Fig.7  泾页1井周边反演电阻率剖面(a)及反演充电率剖面(b)
[1] 滕龙, 徐振宇, 黄正清, 等. 页岩气勘探中的地球物理方法综述及展望[J]. 资源调查与环境, 2014, 35(1):61-66.
[1] Teng L, Xu Z Y, Huang Z Q, et al. Summary and prospect of geophysical methods for the shale gas exploration[J]. Resources Survey and Environment, 2014, 35(1): 61-66.
[2] 何继善, 李帝铨, 戴世坤. 广域电磁法在湘西北页岩气探测中的应用[J]. 石油地球物理勘探, 2014, 49(5):1006-1012.
[2] He J S, Li D Q, Dai S K. Shale gas detection with wide field electromagnetic method in North-western Hunan[J]. Oil Geophysical Prospecting, 2014, 49(5): 1006-1012.
[3] Yang X L, Li B, Peng C S, et al. Application of a wide-field electromagnetic method to shale gas exploration in South China[J]. Applied Geophysics: Bulletin of Chinese Geophysical Society, 2017, 14(3): 441-448.
[4] 孟凡洋, 包书景, 陈科, 等. 基于广域电磁法的页岩气有利区预测——以渝东北巫山地区为例[J]. 物探与化探, 2018, 42(1):68-74.
[4] Meng F Y, Bao S J, Chen K, et al. The prediction of shale gas favorable area based on wide area electromagnetic method: A case study of Wushan area in northeast Chongqing[J]. Geophysical and Geochemical Exploration, 2018, 42(1): 68-74.
[5] 何继善. 广域电磁法理论及应用研究的新进展[J]. 物探与化探, 2020, 44(5):985-990.
[5] He J S. New research progress in theory and application of wide field electromagnetic method[J]. Geophysical and Geochemical Exploration, 2020, 44(5): 985-990.
[6] 李帝铨, 汪振兴, 胡艳芳, 等. 广域电磁法在武陵山区页岩气勘探中的探索应用——以黔北桐梓地区为例[J]. 物探与化探, 2020, 44(5):991-998.
[6] Li D Q, Wang Z X, Hu Y F, et al. The application of wide field electromagnetic method to shale gas exploration in Wuling Mountain area: A case study of Tongzi area in northern Guizhou[J]. Geophysical and Geochemical Exploration, 2020, 44(5): 991-998.
[7] 傅良魁. 复电阻率法异常的频谱及空间分布规律[J]. 地质与勘探, 1981, 15(2):48-55.
[7] Fu L K. Spectrum and spatial distribution pattern of anomalies of the complex resistivity method[J]. Geology and Exploration, 1981, 15(2): 48-55.
[8] 罗延钟, 吴之训. 谱激电法中频率相关系数的应用[J]. 地球物理学报, 1992, 35(4):490-500.
[8] Luo Y Z, Wu Z X. The application of frequency dependent factor in spectral induced polarization method[J]. Chinese Journal of Geophysics, 1992, 35(4): 490-500.
[9] 李汝传, 王书民, 雷达. 复电阻率法和CSAMT法在土屋铜矿区的勘查效果[J]. 地质与勘探, 2004, 38(s1):32-36.
[9] Li R C, Wang S M, Lei D. The results of complex resistivity (CR) and controlled source audio-frequency magnetotellurics (CSAMT) survey in Tuwu copper mining area[J]. Geology and Exploration, 2004, 38(s1): 32-36.
[10] 张焱孙, 张虎生, 邢应太, 等. 江西北武夷某多金属矿区复电阻率法勘查效果[J]. 物探与化探, 2010, 34(5):587-589.
[10] Zhang Y S, Zhang H S, Xing Y T, et al. The effect of applying complex resistivity method to the exploration of a certain polymetallic deposit in Wuyi northern Jiangxi Province[J]. Geophysical and Geochemical Exploration, 2010, 34(5): 587-589.
[11] 徐自生, 张丽, 唐伟, 等. 复电阻率法(CR)在内蒙古那吉河铅锌矿探测中的应用[J]. 矿产勘查, 2015, 6(2):165-170.
[11] Xu Z S, Zhang L, Tang W, et al. Application of complex resis-tivity method (CR) in prospecting lead-zinc deposit in Inner Mongolia[J]. Mineral Exploration, 2015, 6(2): 165-170.
[12] 许传建, 徐自生, 杨自成, 等. 复电阻率(CR)法探测油气藏的应用效果[J]. 石油地球物理勘探, 2004, 39(S):31-35.
[12] Xu C J, Xu Z S, Yang Z C, et al. Application of the complex resistivity (CR) method to detect oil and gas reservoirs[J]. Oil Geophysical Prospecting, 2004, 39(S): 31-35.
[13] 苏朱刘, 吴信全, 胡文宝, 等. 复视电阻率(CR)法在油气预测中的应用[J]. 石油地球物理勘探, 2005, 40(4):467-471.
[13] Su Z L, Wu X Q, Hu W B, et al. Application of complex apparent resistivity (CR) method in prediction of oil/gas[J]. Oil Geophysical Prospecting, 2005, 40(4): 467-471.
[14] 苏朱刘, 胡文宝, 颜泽江, 等. 油气藏上方激电谱的野外观测试验结果及分析[J]. 石油天然气学报, 2009, 31(6):59-64.
[14] Su Z L, Hu W B, Yan Z J, et al. Field test result and analysis on induced-polarization spectrum of oil-gas reservoirs[J]. Journal of Oil and Gas Technology, 2009, 31(6): 59-64.
[15] 赵迪斐, 郭英海, 朱炎铭, 等. 龙马溪组页岩气复电阻率勘探的理论依据[J]. 非常规油气, 2016, 3(3):15-20.
[15] Zhao D F, Guo Y H, Zhu Y M, et al. The theoretical basis of shale gas exploration with complex resistivity in Longmaxi formation[J]. Unconventional Oil & Gas, 2016, 3(3): 15-20.
[16] 雷闯. 复电阻率法在涪陵地区页岩气勘探中的试验[C]// 中国石油学会2015年物探技术研讨会论文集, 2015.
[16] Lei C. Experimentation of the complex resistivity method in shale gas exploration in the Fuling area[C]// Proceedings of the 2015 Geophysical Exploration Technology Symposium of the Chinese Petroleum Society, 2015.
[17] 刘东鹰. 苏皖下扬子区中古生界油气勘探方向[J]. 石油天然气学报, 2003, 25(s2):46-47.
[17] Liu D Y. Target of Meso-Paleozoic hydrocarbon exploration in Jiangsu-Anhui Lower Yangtze region[J]. Journal of Jianghan Petroleum Insititute, 2003, 25(s2): 46-47.
[18] 赵牧华, 石刚, 张安徽, 等. 安徽皖江地区页岩气地质调查地震勘探数据采集技术研究[J]. 华东地质, 2017, 38(3):203-209.
[18] Zhao M H, Shi G, Zhang A H, et al. Acquisition technology study of shale gas seismic prospecting data in the Wanjiang region, Anhui Province[J]. East China Geology, 2017, 38(3): 203-209.
[19] 宋桂桥, 杨振升, 薛野. 中石化下扬子地区油气地震勘探攻关进展及方向[J]. 石油物探, 2019, 58(2):303-312.
[19] Song G Q, Yang Z S, Xue Y. Progress and direction of seismic exploration in the SINOPEC Lower Yangtze area, China[J]. Geophysical Prospecting for Petroleum, 2019, 58(2): 153-162.
[20] 殷启春, 郑红军, 蒲可瑜, 等. 安徽巢湖—含山地区页岩气二维地震勘探研究[J]. 安徽地质, 2019, 29(1):49-54.
[20] Yin Q C, Zheng H J, Pu K Y, et al. Two-dimensional seismic exploration of shale gas in the Chaohu-Hanshan area, Anhui Province[J]. Geology of Anhui, 2019, 29(1): 49-54.
[21] 刘崧. 谱激电法[M]. 武汉: 中国地质大学出版社, 1998.
[21] Liu S. SIP method[M]. Wuhan: China University of Geosciences Press, 1998.
[22] 潘磊, 陈桂华, 徐强, 等. 下扬子地区二叠系富有机质泥页岩孔隙结构特征[J]. 煤炭学报, 2013, 38(5):787-793.
[22] Pan L, Chen G H, Xu Q, et al. Pore structure characteristics of Permian organic-rich shale in Lower Yangtze area[J]. Journal of China Coal Society, 2013, 38(5): 787-793.
[23] 郑红军, 殷启春, 滕龙, 等. 下扬子地区古生界页岩气基础地质调查[R]. 中国地质调查局南京地质调查中心, 2018.
[23] Zheng H J, Yin Q C, Teng L, et al. Fundamental Geological Investigation of Paleozoic Shale Gas in the Lower Yangzi Region[R]. Nanjing Center, China Geological Survey, 2018.
[24] 赵志义, 王帅, 刘昊, 等. 基于模糊综合评价法优选安徽省页岩气潜力区[J]. 中国石油和化工标准与质量, 2019, 39(18):155-156.
[24] Zhao Z Y, Wang S, Liu H, et al. Fuzzy integrated evaluation method for the selection of shale gas potential areas in Anhui Province[J]. China Petroleum and Chemical Standard and Quality, 2019, 39(18): 155-156.
[25] 徐菲菲, 张训华, 黄正清, 等. 下扬子地区宁国凹陷大隆组-孤峰组泥页岩储层特征[J]. 成都理工大学学报:自然科学版, 2019, 46(2):54-64.
[25] Xu F F, Zhang X H, Huang Z Q, et al. Characteristics of the Dalong and Gufeng Formation shale reservoirs in Ningguo depression, Lower Yangtze Region, China[J]. Journal of Chengdu University of Technology:Science & Technology Edition, 2019, 46(2): 54-64.
[26] 宋腾, 林拓, 陈科, 等. 下扬子皖南地区上二叠统(泾页1井)发现海陆过渡相页岩气[J]. 中国地质, 2017, 44(3):606-607.
[26] Song T, Lin T, Chen K, et al. The discovery of shale gas in Upper Permian transitional facies at Jinye-1 well in Lower Yangtze region[J]. Geology in China, 2017, 44(3): 606-607.
[27] 石刚, 滕龙, 王佳龙, 等. 下扬子地区二叠系“三气一油”钻探发现[J]. 中国地质, 2018, 45(2):4164-17.
[27] Shi G, Teng L, Wang J L, et al. Drilling discovery of “Three Gas One Oil” in the Permian strata of Lower Yangtze area[J]. Geo-logy in China, 2018, 45(2): 416-417.
[28] 王俊涛, 徐锦龙, 沈仕豪. 安徽无为—南陵—宣城地区基础地质调查与综合编图(2019年度)[R]. 安徽省地质调查院, 2019.
[28] Wang J T, Xu J L, Sheng S H. Fundamental Geological Survey and Integrated Mapping in Wuwei-Nanling-Xuancheng area, Anhui Province (2019)[R]. Geological Survey of Anhui Province, 2019.
[29] 向葵, 胡文宝, 严良俊, 等. 川黔地区页岩复电阻率的频散特性[J]. 石油地球物理勘探, 2014, 49(5):10131019.
[29] Xiang K, Hu W B, Yan L J, et al. Complex resistivity dispersion characteristics of shale samples in Sichuan and Guizhou area[J]. Oil Geophysical Prospection, 2014, 49(5): 1013-1019.
[30] 张丽, 吴凯, 王秋璇, 等. 复电阻率(CR)法在江苏某地金属矿上的应用[J]. 中国石油和化工标准与质量, 2017, 37(16):90-91.
[30] Zhang L, Wu K, Wang Q X, et al. Application of the complex resistivity (CR) method on a metal mine in Jiangsu Province[J]. China Petroleum and Chemical Standard and Quality, 2017, 37(16): 90-91.
[31] Brown R J. EM coupling in multifrequency IP and a generalization of the Cole-Cole impedance model[J]. Geophysical Prospecting, 1985, 33(2): 282-302.
doi: 10.1111/j.1365-2478.1985.tb00435.x
[32] 安徽省地质局区域地质调查队. 中华人民共和国区域地质调查报告宣城幅广德幅(1:20万)[R]. 安徽省地质局区域地质调查队, 1974.
[32] Anhui Provincial Geological Bureau Regional Geological Survey Team. Report of the regional geological survey of the People’s Republic of China, Xuancheng Section & Guangde Section (1:200 000)[R]. Anhui Provincial Geological Bureau Regional Geo-logical Survey Team, 1974.
[33] 杜建国, 许卫, 孙乘云. 中华人民共和国区域地质调查报告安庆市幅(1:25万)[R]. 安徽省地质调查院, 2005.
[33] Du J G, Xu W, Sun C Y, Report of the regional geological survey of the People’s Republic of China, Anqing Section[R]. Geological Survey of Anhui Province, 2005.
[34] 郭旭升. 南方海相页岩气“二元富集”规律——四川盆地及周缘龙马溪组页岩气勘探实践认识[J]. 地质学报, 2014, 88(7):1209-1218.
[34] Guo X S. Rules of two-factor enrichment for marine shale gas in southern China:Understanding from the Longmaxi Formation shale gas in Sichuan Basin and its surrounding area[J]. Acta Geologica Sinica, 2014, 88(7): 1209-1218.
[35] 翟刚毅, 王玉芳, 包书景, 等. 我国南方海相页岩气富集高产主控因素及前景预测[J]. 地球科学, 2017, 42(7):1057-1068.
[35] Zhai G Y, Wang Y F, Bao S J, et al. Major factors controlling the accumulation and high productivity of marine shale gas and prospect forecast in southern China[J]. Earth Science, 2017, 42(7): 1057-1068.
[36] 王钢金. 从重磁场特征探讨江南断裂和周王断裂的性质[J]. 安徽地质, 1993, 3(1):71-76.
[36] Wang G J. Study on properties of the Jiangnan and Zhouwang Faults through characteristic analysis of their gravity and magnetic fields[J]. Geology of Anhui, 1993, 3(1): 71-76.
[1] 田巍, 李旭兵, 王保忠. 大地电磁测深在湘东南坳陷页岩气勘探中的应用[J]. 物探与化探, 2019, 43(2): 281-289.
[2] 周印明, 刘雪军, 张春贺, 朱永山. 快速识别页岩气“甜点”目标的时频电磁勘探技术及应用[J]. 物探与化探, 2015, 39(1): 60-63,83.
[3] 张焱孙, 张虎生, 邢应太, 杜瑞云. 江西北武夷某多金属矿区复电阻率法勘查效果[J]. 物探与化探, 2010, 34(5): 587-589.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com