Please wait a minute...
E-mail Alert Rss
 
物探与化探  2021, Vol. 45 Issue (1): 149-158    DOI: 10.11720/wtyht.2021.1384
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
基于非结构三角网格的海洋CSEM和MT二维联合反演研究
艾正敏1,2(), 叶益信1,2, 汤文武1,2, 陈晓1,2, 杜家明1,2
1.东华理工大学 放射性地质与勘探技术国防重点学科实验室,江西 南昌 330013
2.东华理工大学 地球物理与测控技术学院,江西 南昌 330013
A test study of 2D joint inversion of marine CSEM and MT based on unstructured triangular grid
AI Zheng-Min1,2(), YE Yi-Xin1,2, TANG Wen-Wu1,2, CHEN Xiao1,2, DU Jia-Ming1,2
1. Fundamental Science on Radioactive Geology and Exploration Technology Laboratory, East China University of Technology, Nanchang 330013, China
2. School of Geophysics and Measurement and Control Technology, East China University of Technology, Nanchang 330013, China
全文: PDF(3570 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

采用非结构三角形网格结合快速Occam算法对海洋可控源电磁(CSEM)与大地电磁(MT)数据进行二维联合反演试验研究。非结构三角形网格能够准确地模拟起伏地形和复杂地质构造,对反演目标区域采用精细网格剖分,其他区域采用粗网格剖分,在满足精度的前提下减少了不必要的计算量。将CSEM与MT数据加入到同一反演数据集中,通过对联合反演数据权重公式进行推导,构建CSEM及MT数据相关权重因子,控制不同数据的拟合权重来实现联合反演。最后对不同模型进行了反演计算,结果表明联合反演比单一反演对海底构造与异常体的还原度更高,验证了联合反演算法的可靠性。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
艾正敏
叶益信
汤文武
陈晓
杜家明
关键词 CSEMMTOccam联合反演非结构网格    
Abstract

In this paper, an unstructured triangular grid combined with a fast Occam algorithm is used to carry out a two-dimensional joint inversion study of marine controlled source electromagnetic (CSEM) and magnetotelluric (MT) data. The unstructured triangular grid can accurately simulate undulating terrain and complex geological structures. Fine meshing is used for the inversion target area, and the other area is divided by coarse meshing, which reduces unnecessary calculations under the premise of meeting accuracy. For the purpose of realizing the joint inversion, the CSEM and MT data are assembled to the same inversion data set, and the relevant weight factors of the CSEM and MT data are constructed from the joint inversion data weight formula, which controls the fitting weights of different data. Finally, inversion calculations are performed on different models, and the results show that the joint inversion has a higher degree of recovery of seafloor structures and anomalous bodies than a single inversion, which verifies the reliability of the joint inversion algorithm.

Key wordsCSEM    MT    Occam    joint inversion    unstructured grid
收稿日期: 2020-07-29      修回日期: 2020-10-25      出版日期: 2021-02-20
ZTFLH:  P631  
基金资助:国家自然科学基金(41774078);江西省自然科学基金重点项目(20202ACBL211006)
作者简介: 艾正敏(1995-),男,东华理工大学2018级研究生,主要研究方向为大地电磁法正反演。Email:azm23333@163.com
引用本文:   
艾正敏, 叶益信, 汤文武, 陈晓, 杜家明. 基于非结构三角网格的海洋CSEM和MT二维联合反演研究[J]. 物探与化探, 2021, 45(1): 149-158.
AI Zheng-Min, YE Yi-Xin, TANG Wen-Wu, CHEN Xiao, DU Jia-Ming. A test study of 2D joint inversion of marine CSEM and MT based on unstructured triangular grid. Geophysical and Geochemical Exploration, 2021, 45(1): 149-158.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2021.1384      或      https://www.wutanyuhuatan.com/CN/Y2021/V45/I1/149
Fig.1  联合反演流程示意
Fig.2  二维水平海底模型
Fig.3  自适应正演网格剖分示意(以CSEM网格为例)
a—初次优化网格,1 445个节点,2 849个三角单元; b—第12次自适应细化后的最终网格部分,43 127个节点,86 139个三角单元; 示意图只展示了模型中间的异常区域
Fig.4  初始模型的反演网格剖分
Fig.5  简单模型反演结果
a—MT反演; b—CSEM反演; c—CSEM与MT联合反演
Fig.6  MT观测数据(上)与联合反演正演响应(下)的拟断面图对比
Fig.7  发射源在y=0处CSEM观测数据与联合反演模型响应的振幅和相位拟合
方法 数据个数 耗时/min 拟合差RMS 粗糙度 迭代次数
MT 1280 157.7 2.7435 9.4157 20
CSEM 1226 368.5 1.0099 13.76 15
CSEM+MT 2506 1247.3 2.8047 13.02 21
Table 1  反演耗时、拟合差、粗糙度及迭代次数统计
Fig.8  不同权重因子q值时的联合反演结果
Fig.9  不同q值时联合反演最终RMS值
Fig.10  二维复杂海洋模型
Fig.11  初始模型的反演网格剖分
Fig.12  反演结果
a—MT反演; b—CSEM反演; c—CSEM与MT联合反演; d—误差变化
[1] Constable S, Srnka L J. An introduction to marine controlled-source electromagnetic methods for hydrocarbon exploration[J]. Geophysics, 2007,72(2):3-12.
[2] Constable S. Ten years of marine CSEM for hydrocarbon exploration[J]. Geophysics, 2010,75(5):67-81.
[3] 汪海峰, 邓明, 陈凯. 海底电磁接收机新进展[J]. 物探与化探, 2016,40(4):809-815.
doi: 10.11720/wtyht.2016.4.27
[3] Wang H F, Deng M, Chen K. New progress of submarine electromagnetic receivers[J]. Geophysical and Geochemical Exploration, 2016,40(4):809-815.
[4] 陈凯, 景建恩, 赵庆献, 等. 海底可控源电磁接收机及其水合物勘查应用[J]. 地球物理学报, 2017,60(11):4262-4272.
[4] Chen K, Jing J E, Zhao Q X, et al. Submarine controllable source electromagnetic receiver and its application in hydrate exploration[J]. Chinese Journal of Geophysics, 2017,60(11):4262-4272.
[5] Key K, Weiss C. Adaptive finite-element modeling using unstructured grids: The 2D magnetotelluric example[J]. Geophysics, 2006,71(6):G291-G299.
doi: 10.1190/1.2348091
[6] Li Y G, Key K. 2D marine controlled-source electromagnetic modeling:Part 1—An adaptive finite-element algorithm[J]. Geophysics, 2007,72(2):WA51-WA62.
[7] Key K, Ovall J S. A parallel goal-oriented adaptive finite element method for 2.5-D electromagnetic modelling[J]. Geophysical Journal International, 2011,186(1):137-154.
doi: 10.1111/j.1365-246X.2011.05025.x
[8] 韩波, 胡祥云, 黄一凡, 等. 基于并行化直接解法的频率域可控源电磁三维正演[J]. 地球物理学报, 2015,58(8):2812-2826.
[8] Han B, Hu X Y, Huang Y F, et al. 3D frequency domain CSEM modeling using a parallel direct solver[J]. Chinese Journal of Geophysics, 2015,58(8):2812-2826.
[9] 韩骑, 胡祥云, 程正璞, 等. 自适应非结构有限元MT二维起伏地形正反演研究[J]. 地球物理学报, 2015,58(12):4675-4684.
[9] Han Q, Hu X Y, Chen Z P, et al. A study of two dimensional MT inversion with steep topography using the adaptive unstructured finite element method[J]. Chinese Journal of Geophysics, 2015,58(12):4675-4684.
[10] 叶益信, 李予国, 刘颖, 等. 基于局部加密非结构网格的海洋可控源电磁法三维有限元正演[J]. 地球物理学报, 2016,59(12):4747-4758.
[10] Ye Y X, Li Y G, Liu Y, et al. 3D finite element modeling of marine controlled source electromagnetic fields using locally refined unstructured meshes[J]. Chinese Journal of Geophysics, 2016,59(12):4747-4758.
[11] 陈晓, 于鹏, 张罗磊, 等. 大地电磁与地震正则化同步联合反演[J]. 地震地质, 2010,32(3):402-408.
doi: 10.3969/j.issn.0253-4967.2010.03.006
[11] Chen X, Yu P, Zhang L L, et al. Synchronous joint inversion of magnetotelluric and seismic regularization[J]. Seismology and Geology, 2010,32(3):402-408.
[12] 陈晓, 于鹏, 邓居智, 等. 基于宽范围岩石物性约束的大地电磁和地震联合反演[J]. 地球物理学报, 2016,59(12):4690-4700.
[12] Chen X, Yu P, Deng J Z, et al. Joint inversion of magnetotelluric and seismic based on wide range of rock property constraints[J]. Chinese Journal of Geophysics, 2016,59(12):4690-4700.
[13] Commer M, Newman G A. Three-dimensional controlled-source electromagnetic and magnetotelluric joint inversion[J]. Geophysical Journal International, 2009,178(3):1305-1316.
doi: 10.1111/gji.2009.178.issue-3
[14] Sasaki Y. 3D inversion of marine CSEM and MT data: An approach to shallow-water problem[J]. Geophysics, 2013,78(1):59-65.
[15] Blatter D, Key K, Ray A, et al. Bayesian joint inversion of controlled source electromagnetic and magnetotelluric data to image freshwater aquifer offshore New Jersey[J]. Geophysical Journal International, 2019,218(3):1822-1837.
doi: 10.1093/gji/ggz253
[16] Constable S C, Parker R L, Constable C G. Occam’s inversion-a practical algorithm for generating smooth models from electromagnetic sounding data[J]. Geophysics, 1987,52(3):289-300.
doi: 10.1190/1.1442303
[17] Key K. MARE2DEM: A 2-D inversion code for controlled-source electromagnetic and magnetotelluric data[J]. Geophysical Journal International, 2016,207(1):571-588.
doi: 10.1093/gji/ggw290
[18] 徐世浙. 地球物理中的有限单元法[M]. 北京: 科学出版社, 1994: 159-170.
[18] Xu S Z. The finite element method in geophysics[M]. Beijing: Science Press, 1994: 159-170.
[19] Franke A, Borner R, Spitzer K, et al. Adaptive unstructured grid finite element simulation of two-dimensional magnetotelluric fields for arbitrary surface and seafloor topography[J]. Geophysical Journal International, 2007,171(1):71-86.
doi: 10.1111/gji.2007.171.issue-1
[20] Bank R E, Xu J C. Asymptotically exact a posteriori error estimators, Part Ⅱ: General unstructured grids[J]. SIAM Journal on Numerical Analysis, 2003,41:2313-2332.
doi: 10.1137/S0036142901398751
[21] Ovall J S. Asymptotically exact functional error estimators based on superconvergent gradient recovery[J]. Numerical Mathematics, 2006,102:543-558.
doi: 10.1007/s00211-005-0655-9
[22] Wiik T, Hokstad K, Ursin B, et al. Joint contrast source inversion of marine magnetotelluric and controlled-source electromagnetic data[J]. Geophysics, 2013,78(6):315-327.
[23] Bennington N L, Zhang H, Thurber C H, et al. Joint inversion of seismic and magnetotelluric data in the Parkfield Region of California using the normalized cross-gradient constraint[J]. Pure and Applied Geophysics, 2015,172(5):1033-1052.
doi: 10.1007/s00024-014-1002-9
[24] 熊彬, 罗天涯, 蔡红柱, 等. 起伏地形大地电磁二维反演[J]. 物探与化探, 2016,40(3):587-593.
doi: 10.11720/wtyht.2016.3.22
[24] Xiong B, Luo T Y, Cai H Z, et al. Two-dimensional magnetotelluric inversion of undulating terrain[J]. Geophysical and Geochemical Exploration, 2016,40(3):587-593.
[25] Shewchuk J R. Triangle: Engineering a 2D quality mesh generator and Delaunay triangulator[C]// Workshop on Applied Computational Geometry. Springer, Berlin, Heidelberg, 1996: 203-222.
[1] 赵宝峰, 汪启年, 郭信, 官大维, 陈同刚, 方雯. 汝城盆地深部构造及地热资源赋存潜力——基于重力与AMT探测的认识[J]. 物探与化探, 2023, 47(5): 1147-1156.
[2] 薛东旭, 刘诚, 郭发, 王俊, 徐多勋, 杨生飞, 张沛. 基于土壤氡气测量和可控源音频大地电磁的陕西眉县汤峪地热预测[J]. 物探与化探, 2023, 47(5): 1169-1178.
[3] 许第桥, 李茂. 二连盆地宽频大地电磁法数据精细反演处理研究——以满都拉图地区的数据为例[J]. 物探与化探, 2023, 47(4): 994-1001.
[4] 陈晓, 曾志文, 邓居智, 张志勇, 陈辉, 余辉, 王彦国. 基于不等式和Gramian约束的MT和重力正则化联合反演[J]. 物探与化探, 2023, 47(3): 575-583.
[5] 贺景龙, 王占彬, 寇少磊, 杨凯. 基于C#的MTU系列大地电磁测深仪数据文件的研究与应用[J]. 物探与化探, 2023, 47(1): 171-178.
[6] 张健, 冯旭亮, 岳想平. 综合物探方法在隐伏岩溶探测中的应用[J]. 物探与化探, 2022, 46(6): 1403-1410.
[7] 吴旭亮, 李茂. 基于AMT的龙首山成矿带西岔地段马路沟断裂带深部发育特征[J]. 物探与化探, 2022, 46(5): 1180-1186.
[8] 姜奋勇, 叶益信, 陈海文, 杨烁健. 基于非结构网格的带地形MT二维Occam反演及应用[J]. 物探与化探, 2022, 46(2): 482-489.
[9] 邢涛, 袁伟, 李建慧. 回线源瞬变电磁法的一维Occam反演[J]. 物探与化探, 2021, 45(5): 1320-1328.
[10] 虎新军, 陈晓晶, 李宁生, 仵阳, 陈涛涛. 银川盆地东缘黄河断裂展布特征新认识[J]. 物探与化探, 2021, 45(4): 913-922.
[11] 岳大斌, 王章翔, 陈加中, 杨秀娟. 综合技术方法在寻找含矿岩浆通道中的应用——以四川杨柳坪岩浆铜镍硫化物矿床为例[J]. 物探与化探, 2021, 45(3): 601-608.
[12] 李英宾. 可控源音频大地电磁测量对腾格尔坳陷东北缘下白垩统赛汉组砂体的识别及其地质意义[J]. 物探与化探, 2021, 45(3): 616-623.
[13] 陈小龙, 高坡, 程顺达, 王晓青, 罗可. 西藏帮浦东段—笛给铅锌矿区CSAMT异常特征与深部找矿预测[J]. 物探与化探, 2021, 45(2): 361-368.
[14] 徐云霞, 文鹏飞, 张宝金, 刘斌. OBS在琼东南海域水合物矿体识别中的应用[J]. 物探与化探, 2020, 44(6): 1276-1282.
[15] 李英宾, 谢明宏, 张占彬, 李毅, 魏滨, 张伟. 综合物探方法在上杭盆地古石背地区铀矿勘查中的应用[J]. 物探与化探, 2020, 44(6): 1283-1293.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com