Please wait a minute...
E-mail Alert Rss
 
物探与化探  2025, Vol. 49 Issue (5): 1212-1220    DOI: 10.11720/wtyht.2025.1400
  方法研究信息处理仪器研制 本期目录 | 过刊浏览 | 高级检索 |
CPT磁力仪拖曳式探测系统的深度残差网络磁补偿方法
徐强锋1,2(), 王学锋1,2(), 邓意成1,2, 和焕雪1,2, 张慧松1,2, 卢向东1,2
1.北京航天控制仪器研究所,北京 100854
2.中国航天科技集团有限公司 量子工程研究中心,北京 100094
Deep residual network-based magnetic compensation for a towed, CPT-based magnetometer detection system
XU Qiang-Feng1,2(), WANG Xue-Feng1,2(), DENG Yi-Cheng1,2, HE Huan-Xue1,2, ZHANG Hui-Song1,2, LU Xiang-Dong1,2
1. Beijing Institute of Aerospace Control Devices, Beijing 100854, China
2. Quantum Engineering Research Center, China Aerospace Science and Technology Corporation, Beijing 100094, China
全文: PDF(3218 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

传统的TL线性模型在处理CPT原子磁力仪拖曳式探测系统中的复杂磁干扰数据时,补偿精度存在局限性。为此本文引入神经网络技术,以实现更精准的非线性补偿。然而,常规神经网络模型在参数更新过程中可能遭遇梯度消失或过拟合等问题。为应对这些挑战,本文提出了一种基于深度残差网络的磁补偿模型(MCRNet),以进一步提升吊舱内磁干扰的补偿效果。试验结果显示,与传统方法中补偿效果最优的残差反向传播网络(ResBP)相比,MCRNet模型的改善比(IR)从4.251提升至4.826,增幅达13.53%;而补偿剩磁均方根误差(RMSE)从0.2减少至0.171,降低了14.5%。该模型提升了拖曳式磁异常探测系统的磁测精度。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐强锋
王学锋
邓意成
和焕雪
张慧松
卢向东
关键词 CPT原子磁力仪拖曳式探测系统MCRNet模型磁干扰补偿神经网络    
Abstract

The traditional Tolles-Lawson (TL) linear model suffers limitations of compensation precision in processing complex magnetic disturbance data obtained using a towed coherent population trapping (CPT)-based atomic magnetometer detection system. This study introduced neural network technology to achieve more precise nonlinear compensation. Given that conventional neural network models encounter issues such as gradient vanishment or overfitting during parameter updates, this study proposed a deep residual network-based magnetic compensation model (MCRNet) to further enhance the compensation effects of magnetic interference within a towed pod. Experimental results demonstrate that compared to the best traditional method—The Residual Backpropagation Network (ResBP), the proposed MCRNet model increased the improvement ratio (IR) to 4.826 from 4.251, increasing by 13.53%, and reduced the root mean square error (RMSE) of compensated residual magnetism to 0.171 from 0.2, representing a reduction of 14.5%. The proposed model enhances the magnetic survey accuracy of towed magnetic anomaly detection systems.

Key wordsCPT-based atomic magnetometer    towed detection system    MCRNet model    magnetic interference compensation    neural network
收稿日期: 2024-09-26      修回日期: 2024-11-18      出版日期: 2025-10-20
ZTFLH:  TH762  
通讯作者: 王学锋(1974-),男,研究员,主要研究方向为原子磁力仪、光纤传感等航天光学测量。Email:xuefeng_wang@sina.cn
作者简介: 徐强锋(1995-),男,博士研究生,主要从事CPT原子磁力仪工程应用的误差校准、航磁补偿、磁异探测等方面的研究工作。Email:xqfcasc13@163.com
引用本文:   
徐强锋, 王学锋, 邓意成, 和焕雪, 张慧松, 卢向东. CPT磁力仪拖曳式探测系统的深度残差网络磁补偿方法[J]. 物探与化探, 2025, 49(5): 1212-1220.
XU Qiang-Feng, WANG Xue-Feng, DENG Yi-Cheng, HE Huan-Xue, ZHANG Hui-Song, LU Xiang-Dong. Deep residual network-based magnetic compensation for a towed, CPT-based magnetometer detection system. Geophysical and Geochemical Exploration, 2025, 49(5): 1212-1220.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2025.1400      或      https://www.wutanyuhuatan.com/CN/Y2025/V49/I5/1212
Fig.1  残差网络结构
Fig.2  MCRNet磁补偿神经网络模型
卷积层 卷积核尺寸 步长 填充 归一化层 特征
1、2、3、4、5、8、9、10、
13、14、15、18、19、20
3 1 1 1、2、3、4、5 64
6、11、16 3 2 1 6、7、8、9、10 128
7、12、17 1 2 0 11、12、13、14、15 256
- - - - 16、17、18、19、20 512
Table 1  MCRNet参数设置
Fig.3  模型训练与预测流程
Fig.4  拖曳式磁异探测吊舱框架
Fig.5  拖曳式吊舱探测试验环境
Fig.6  磁力仪实测数据
Fig.7  数据集制作流程
Fig.8  CPT原子磁力仪转向差校准
Fig.9  模型训练与验证过程
Fig.10  测试集预测结果
指标 FLOPs PC TT/s PT/μs
MCRNet 14.927M 3.847M 332.882 61.272
Table 2  模型参数
Fig.11  不同算法模型比较
[20] 彭翔, 郭弘. 光泵原子磁力仪技术[J]. 导航与控制, 2022, 21(S2):101-121,198.
[20] Peng X, Guo H. Techniques in optically-pumped atomic magnetometer[J]. Navigation and Control, 2022, 21(S2):101-121,198.
[21] Gnadt A R, Wollaber A B, Nielsen A P. Derivation and extensions of the tolles-lawson model for aeromagnetic compensation[EB/OL]. 2022:2212.09899,2022-12-19. https://arxiv.org/abs/2212.09899v1.
[22] 邱锡鹏. 神经网络与深度学习[M]. 北京: 机械工业出版社, 2020.
[22] Qiu X P. Neural networks and deep learning[M]. Beijing: China Machine Press, 2020.
[23] He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),IEEE,2016.
[24] Wang H, Du C P, Wang H D, et al. Aeromagnetic compensation with suppressing heading error of the scalar atomic magnetometer[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(7):1134-1138.
doi: 10.1109/LGRS.2019.2940824
[25] Fan S F, Chen S D, Zhang S, et al. An improved Overhauser magnetometer for Earth’s magnetic field observation[C]// Earth Observing Systems XXI,SPIE, 2016.
[26] Zhang X N, Kou J, Li J, et al. An omnidirectional measurement technology of CPT magnetometer based on coupling of the dark state[C]// Fourth Seminar on Novel Optoelectronic Detection Technology and Application,SPIE, 2018.
[27] 王学锋, 邓意成, 徐强锋, 等. 宇航用原子磁力仪研究与应用进展[J]. 前瞻科技, 2022, 1(1):159-168.
doi: 10.3981/j.issn.2097-0781.2022.01.013
[27] Wang X F, Deng Y C, Xu Q F, et al. Research and application progress of atomic magnetometers for aerospace[J]. Science and Technology Foresight, 2022, 1(1):159-168.
doi: 10.3981/j.issn.2097-0781.2022.01.013
[28] Vasconcelos J F, Elkaim G, Silvestre C, et al. Geometric approach to strapdown magnetometer calibration in sensor frame[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(2):1293-1306.
[29] Wu Y, Shi W. On calibration of three-axis magnetometer[J]. IEEE Sensors Journal, 2015, 15(11):6424-6431.
[30] Merayo J M G, Brauer P, Primdahl F, et al. Scalar calibration of vector magnetometers[J]. Measurement Science and Technology, 2000, 11(2):120-132.
[31] 徐强锋, 王学锋, 邓意成, 等. CPT原子磁力仪转向差及其标定补偿[J]. 空间科学与试验学报, 2024, 24(1):95-101.
[31] Xu Q F, Wang X F, Deng Y C, et al. Heading error calibration and compensation of CPT atomic magnetometer[J]. Journal of Space Science and Experiment, 2024, 24(1):95-101.
[32] Xu Q F, Wang X F, Deng Y C, et al. Heading error calibration and compensation of CPT atomic magnetometer[J]. Journal of Space Science and Experiment, 2024, 1(1):95-101.
doi: 10.19963/j.cnki.2097-4302.2024.01.011
[1] 李晨, 周建军. 航磁探测水下目标关键技术发展及应用[J]. 舰船电子工程, 2023, 43(6):184-188.
[1] Li C, Zhou J J. Key technology development and application on aeromagnetic detection of target underwater[J]. Ship Electronic Engineering, 2023, 43(6):184-188.
[2] 殷长春, 张博, 刘云鹤, 等. 航空电磁勘查技术发展现状及展望[J]. 地球物理学报, 2015, 58(8):2637-2653.
doi: 10.6038/cjg20150804
[2] Yin C C, Zhang B, Liu Y H, et al. Review on airborne EM technology and developments[J]. Chinese Journal of Geophysics, 2015, 58(8):2637-2653.
[3] 魏征, 杜度, 刘洋, 等. 美国反潜装备技术发展研究[J]. 舰船科学技术, 2019, 41(17):154-157.
[3] Wei Z, Du D, Liu Y, et al. Research on the development of anti-submarine equipment and technology[J]. Ship Science and Technology, 2019, 41(17):154-157.
[4] Reeves C. Aeromagnetic surveys: principles, practice and interpretation[M]. Washington:Geosoft, 2005.
[5] 黄岩, 罗丁, 冯自成, 等. 无人直升机航磁测量系统集成及应用[J]. 物探与化探, 2019, 43(2):386-392.
[5] Huang Y, Luo D, Feng Z C, et al. Unmanned helicopter aeromagnetic measurement system and its application[J]. Geophysical and Geochemical Exploration, 2019, 43(2):386-392.
[6] 西永在, 路宁, 张兰, 等. 基于无人直升机平台的航磁系统集成与应用[J]. 物探与化探, 2019, 43(1):125-131.
[33] Kingma D P, Ba J. Adam:A method for stochastic optimization[C]// The 3rd International Conference for Learning Representations, 2015.
[6] Xi Y Z, Lu N, Zhang L, et al. Integration and application of an aeromagnetic survey system based on unmanned helicopter platform[J]. Geophysical and Geochemical Exploration, 2019, 43(1):125-131.
[7] Dou Z J, Han Q, Niu X M, et al. An aeromagnetic compensation coefficient-estimating method robust to geomagnetic gradient[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(5):611-615.
[8] Zheng Y X, Li S Y, Xing K, et al. Unmanned aerial vehicles for magnetic surveys:A review on platform selection and interference suppression[J]. Drones, 2021, 5(3):93.
[9] Tolles W E, Lawson J D. Magnetic compensation of MAD equipped aircraft[J]. Airborne Instruments Lab.Inc., 1950, 201(1):1-5.
[10] 刘宇欣, 李雯, 魏东岩, 等. 一种顾及舱内OBE干扰的改进航磁补偿方法[J]. 导航定位与授时, 2024, 11(4):38-46.
[10] Liu Y X, Li W, Wei D Y, et al. A modified aeromagnetic compensation method robust to in-cabin OBE interferences[J]. Navigation Positioning and Timing, 2024, 11(4):38-46.
[11] Zhang C, Du C P, Peng X, et al. An aeromagnetic compensation method for suppressing the magnetic interference generated by electric current with vector magnetometer[J]. Sensors, 2022, 22(16):6151.
[12] Li H, Ge J, Dong H B, et al.Aeromagnetic compensation of rotor UAV based on least squares[C]// 2018 37th Chinese Control Conference (CCC), IEEE,2018.
[13] Su Z N, Jiao J, Zhou S, et al. Aeromagnetic compensation method based on ridge regression algorithm[J]. Global Geology, 2022, 25(1):41-48.
[14] Noriega G, Marszalkowski A. Adaptive techniques and other recent developments in aeromagnetic compensation[J]. First Break, 2017, 35(9):31-38.
[15] Dou Z J, Liu C H, Wang J R, et al. An adaptive aeromagnetic compensation method based on local linear regression[J]. IOP Conference Series:Earth and Environmental Science, 2021, 783(1):012090.
[16] Williams P M. Aeromagnetic compensation using neural networks[J]. Neural Computing & Applications, 1993, 1(3):207-214.
[17] Zhou S, Yang C C, Su Z N, et al. An aeromagnetic compensation algorithm based on radial basis function artificial neural network[J]. Applied Sciences, 2023, 13(1):136.
[18] Yu P, Bi F Y, Jiao J, et al. An aeromagnetic compensation algorithm based on a residual neural network[J]. Applied Sciences, 2022, 12(21):10759.
[19] Oelsner G, Schultze V, IJsselsteijn R, et al. Sources of heading errors in optically pumped magnetometers operated in the Earth’s magnetic field[J]. Physical Review A, 2019,99:013420.
[1] 杨海明, 姚卫星, 唐塑, 潘展超, 关力伟. 基于BP神经网络的时域激电谱Cole-Cole模型参数反演及应用[J]. 物探与化探, 2025, 49(2): 433-440.
[2] 葛大明. 基于深度学习的二维斜率层析反演模型误差校正方法[J]. 物探与化探, 2025, 49(2): 385-393.
[3] 李博, 李长伟, 罗润林, 吕玉增, 王占. 基于VMD-LSTM对大地电磁信号进行噪声检测和预测重构[J]. 物探与化探, 2025, 49(1): 100-117.
[4] 赵军, 冉琦, 朱博华, 李洋, 梁舒瑗, 常健强. 基于前馈神经网络井控多属性融合的断裂识别方法[J]. 物探与化探, 2024, 48(4): 1045-1053.
[5] 张敏, 许一卓, 易继东. 基于可伸缩型注意力机制的神经网络地震数据去噪方法[J]. 物探与化探, 2024, 48(4): 1065-1075.
[6] 杨凯, 刘诚, 贺景龙, 李含, 姚川. 基于人工神经网络的大地电磁时序分类研究[J]. 物探与化探, 2024, 48(2): 498-507.
[7] 郑孝诚, 张明华, 任伟. 卷积神经网络在山东金矿勘查预测中的应用[J]. 物探与化探, 2023, 47(6): 1433-1440.
[8] 刘湘浩, 刘四新, 胡铭奇, 孙中秋, 王千. 基于OMAGA-BP算法的高密度电阻率法反演研究[J]. 物探与化探, 2023, 47(6): 1519-1527.
[9] 王康, 刘彩云, 熊杰, 王永昌, 胡焕发, 康佳帅. 基于全卷积残差收缩网络的地震波阻抗反演[J]. 物探与化探, 2023, 47(6): 1538-1546.
[10] 游希然, 张继锋, 石宇. 基于人工神经网络的瞬变电磁成像方法[J]. 物探与化探, 2023, 47(5): 1206-1214.
[11] 周慧, 孙成禹, 刘英昌, 蔡瑞乾. 基于DC-UNet卷积神经网络的强噪声压制方法[J]. 物探与化探, 2023, 47(5): 1288-1297.
[12] 吴嵩, 宁晓斌, 杨庭伟, 姜洪亮, 卢超波, 苏煜堤. 基于神经网络的探地雷达数据去噪[J]. 物探与化探, 2023, 47(5): 1298-1306.
[13] 王宗仁, 文畅, 谢凯, 盛冠群, 贺建飚. 多尺度时频空三域特征联合下的储层岩性识别方法[J]. 物探与化探, 2023, 47(1): 81-90.
[14] 陈超群, 戴慧敏, 冯雨林, 杨泽, 杨佳佳. 基于Sentinel-2A的孙吴地区土壤有机质反演研究[J]. 物探与化探, 2022, 46(5): 1141-1148.
[15] 王蓉, 熊杰, 刘倩, 薛瑞洁. 基于深度神经网络的重力异常反演[J]. 物探与化探, 2022, 46(2): 451-458.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com