Deep residual network-based magnetic compensation for a towed, CPT-based magnetometer detection system
XU Qiang-Feng1,2(), WANG Xue-Feng1,2(), DENG Yi-Cheng1,2, HE Huan-Xue1,2, ZHANG Hui-Song1,2, LU Xiang-Dong1,2
1. Beijing Institute of Aerospace Control Devices, Beijing 100854, China 2. Quantum Engineering Research Center, China Aerospace Science and Technology Corporation, Beijing 100094, China
The traditional Tolles-Lawson (TL) linear model suffers limitations of compensation precision in processing complex magnetic disturbance data obtained using a towed coherent population trapping (CPT)-based atomic magnetometer detection system. This study introduced neural network technology to achieve more precise nonlinear compensation. Given that conventional neural network models encounter issues such as gradient vanishment or overfitting during parameter updates, this study proposed a deep residual network-based magnetic compensation model (MCRNet) to further enhance the compensation effects of magnetic interference within a towed pod. Experimental results demonstrate that compared to the best traditional method—The Residual Backpropagation Network (ResBP), the proposed MCRNet model increased the improvement ratio (IR) to 4.826 from 4.251, increasing by 13.53%, and reduced the root mean square error (RMSE) of compensated residual magnetism to 0.171 from 0.2, representing a reduction of 14.5%. The proposed model enhances the magnetic survey accuracy of towed magnetic anomaly detection systems.
徐强锋, 王学锋, 邓意成, 和焕雪, 张慧松, 卢向东. CPT磁力仪拖曳式探测系统的深度残差网络磁补偿方法[J]. 物探与化探, 2025, 49(5): 1212-1220.
XU Qiang-Feng, WANG Xue-Feng, DENG Yi-Cheng, HE Huan-Xue, ZHANG Hui-Song, LU Xiang-Dong. Deep residual network-based magnetic compensation for a towed, CPT-based magnetometer detection system. Geophysical and Geochemical Exploration, 2025, 49(5): 1212-1220.
Peng X, Guo H. Techniques in optically-pumped atomic magnetometer[J]. Navigation and Control, 2022, 21(S2):101-121,198.
[21]
Gnadt A R, Wollaber A B, Nielsen A P. Derivation and extensions of the tolles-lawson model for aeromagnetic compensation[EB/OL]. 2022:2212.09899,2022-12-19. https://arxiv.org/abs/2212.09899v1.
[22]
邱锡鹏. 神经网络与深度学习[M]. 北京: 机械工业出版社, 2020.
[22]
Qiu X P. Neural networks and deep learning[M]. Beijing: China Machine Press, 2020.
[23]
He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),IEEE,2016.
[24]
Wang H, Du C P, Wang H D, et al. Aeromagnetic compensation with suppressing heading error of the scalar atomic magnetometer[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(7):1134-1138.
doi: 10.1109/LGRS.2019.2940824
[25]
Fan S F, Chen S D, Zhang S, et al. An improved Overhauser magnetometer for Earth’s magnetic field observation[C]// Earth Observing Systems XXI,SPIE, 2016.
[26]
Zhang X N, Kou J, Li J, et al. An omnidirectional measurement technology of CPT magnetometer based on coupling of the dark state[C]// Fourth Seminar on Novel Optoelectronic Detection Technology and Application,SPIE, 2018.
Wang X F, Deng Y C, Xu Q F, et al. Research and application progress of atomic magnetometers for aerospace[J]. Science and Technology Foresight, 2022, 1(1):159-168.
doi: 10.3981/j.issn.2097-0781.2022.01.013
[28]
Vasconcelos J F, Elkaim G, Silvestre C, et al. Geometric approach to strapdown magnetometer calibration in sensor frame[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(2):1293-1306.
[29]
Wu Y, Shi W. On calibration of three-axis magnetometer[J]. IEEE Sensors Journal, 2015, 15(11):6424-6431.
[30]
Merayo J M G, Brauer P, Primdahl F, et al. Scalar calibration of vector magnetometers[J]. Measurement Science and Technology, 2000, 11(2):120-132.
Xu Q F, Wang X F, Deng Y C, et al. Heading error calibration and compensation of CPT atomic magnetometer[J]. Journal of Space Science and Experiment, 2024, 24(1):95-101.
[32]
Xu Q F, Wang X F, Deng Y C, et al. Heading error calibration and compensation of CPT atomic magnetometer[J]. Journal of Space Science and Experiment, 2024, 1(1):95-101.
doi: 10.19963/j.cnki.2097-4302.2024.01.011
Li C, Zhou J J. Key technology development and application on aeromagnetic detection of target underwater[J]. Ship Electronic Engineering, 2023, 43(6):184-188.
Wei Z, Du D, Liu Y, et al. Research on the development of anti-submarine equipment and technology[J]. Ship Science and Technology, 2019, 41(17):154-157.
[4]
Reeves C. Aeromagnetic surveys: principles, practice and interpretation[M]. Washington:Geosoft, 2005.
Huang Y, Luo D, Feng Z C, et al. Unmanned helicopter aeromagnetic measurement system and its application[J]. Geophysical and Geochemical Exploration, 2019, 43(2):386-392.
Kingma D P, Ba J. Adam:A method for stochastic optimization[C]// The 3rd International Conference for Learning Representations, 2015.
[6]
Xi Y Z, Lu N, Zhang L, et al. Integration and application of an aeromagnetic survey system based on unmanned helicopter platform[J]. Geophysical and Geochemical Exploration, 2019, 43(1):125-131.
[7]
Dou Z J, Han Q, Niu X M, et al. An aeromagnetic compensation coefficient-estimating method robust to geomagnetic gradient[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(5):611-615.
[8]
Zheng Y X, Li S Y, Xing K, et al. Unmanned aerial vehicles for magnetic surveys:A review on platform selection and interference suppression[J]. Drones, 2021, 5(3):93.
[9]
Tolles W E, Lawson J D. Magnetic compensation of MAD equipped aircraft[J]. Airborne Instruments Lab.Inc., 1950, 201(1):1-5.
Liu Y X, Li W, Wei D Y, et al. A modified aeromagnetic compensation method robust to in-cabin OBE interferences[J]. Navigation Positioning and Timing, 2024, 11(4):38-46.
[11]
Zhang C, Du C P, Peng X, et al. An aeromagnetic compensation method for suppressing the magnetic interference generated by electric current with vector magnetometer[J]. Sensors, 2022, 22(16):6151.
[12]
Li H, Ge J, Dong H B, et al.Aeromagnetic compensation of rotor UAV based on least squares[C]// 2018 37th Chinese Control Conference (CCC), IEEE,2018.
[13]
Su Z N, Jiao J, Zhou S, et al. Aeromagnetic compensation method based on ridge regression algorithm[J]. Global Geology, 2022, 25(1):41-48.
[14]
Noriega G, Marszalkowski A. Adaptive techniques and other recent developments in aeromagnetic compensation[J]. First Break, 2017, 35(9):31-38.
[15]
Dou Z J, Liu C H, Wang J R, et al. An adaptive aeromagnetic compensation method based on local linear regression[J]. IOP Conference Series:Earth and Environmental Science, 2021, 783(1):012090.
[16]
Williams P M. Aeromagnetic compensation using neural networks[J]. Neural Computing & Applications, 1993, 1(3):207-214.
[17]
Zhou S, Yang C C, Su Z N, et al. An aeromagnetic compensation algorithm based on radial basis function artificial neural network[J]. Applied Sciences, 2023, 13(1):136.
[18]
Yu P, Bi F Y, Jiao J, et al. An aeromagnetic compensation algorithm based on a residual neural network[J]. Applied Sciences, 2022, 12(21):10759.
[19]
Oelsner G, Schultze V, IJsselsteijn R, et al. Sources of heading errors in optically pumped magnetometers operated in the Earth’s magnetic field[J]. Physical Review A, 2019,99:013420.