Please wait a minute...
E-mail Alert Rss
 
物探与化探  2024, Vol. 48 Issue (4): 1065-1075    DOI: 10.11720/wtyht.2024.1380
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
基于可伸缩型注意力机制的神经网络地震数据去噪方法
张敏1,2(), 许一卓1,2, 易继东1,2
1.中国石油大学(华东) 地球科学与技术学院,山东 青岛 266580
2.深层油气重点实验室,山东 青岛 266580
A method for seismic data denoising based on the neural network with a retractable attention mechanism
ZHANG Min1,2(), XU Yi-Zhuo1,2, YI Ji-Dong1,2
1. School of Geosciences,China University of Petroleum(East China),Qingdao 266580,China
2. Key Laboratory of Deep Oil and Gas,Qingdao 266580,China
全文: PDF(8334 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

地震资料中的随机噪声会影响地震数据的质量,从而影响后续处理与解释的准确性。传统去噪方法受先验条件的约束,效率低下,神经网络具有强大的特征提取能力,能够弥补这些缺点。然而,由于传统神经网络卷积核的局限性,可能会导致全局信息丢失。为了克服这个缺点,本文在卷积神经网络(CNN)的基础上,添加了可伸缩型注意力机制。该机制在网络中同时呈现密集和稀疏两种类型的自注意力模块,这两种注意力模块交替使用可以显著增强神经网络的表现能力,扩大接受场。通过卷积层和注意力模块提取地震数据浅层特征和深层特征,结合CNN的局部建模能力和Transformer的全局建模能力,有利于提升网络的全局交互作用,增强其去除噪声和处理细节的能力。最后,合成和实际地震数据实验结果均表明,该方法相较于Unet和DnCNN,具有更好的噪声压制与保留地震数据有效信息的能力,可以大幅提高信噪比,为地震数据的处理和解释提供帮助。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张敏
许一卓
易继东
关键词 随机噪声卷积神经网络可伸缩型注意力机制Transformer    
Abstract

Random noise in seismic data impairs the quality of the data,thus affecting the accuracy of subsequent processing and interpretation.Conventional denoising methods,constrained by prior conditions,exhibit low efficiency.Neural networks possess a strong feature extraction ability,which can make up for these shortcomings.However,the limitations of convolution kernels in conventional neural networks may lead to the loss of global information.Hence,this study introduced a retractable attention mechanism to the convolutional neural network (CNN).This mechanism presents both dense and sparse self-attention modules in the CNN.The alternate use of the two self-attention modules can significantly enhance the performance of the CNN and expand the receptive field.The shallow and deep features of seismic data were extracted using the convolutional layer and self-attention modules.Combined with CNN's local modeling ability and Transformer's global modeling ability,they contributed to enhancing CNN's global interaction and ability to reduce noise and deal with details.As indicated by the experimental results of synthetic and field data,the method used in this study can more effectively suppress noise and retain effective information of seismic data compared to Unet and DnCNN,significantly improving the signal-to-noise ratio and thus assisting in the processing and interpretation of seismic data.

Key wordsrandom noise    convolutional neural network    retractable attention mechanism    Transformer
收稿日期: 2023-09-20      修回日期: 2024-03-28      出版日期: 2024-08-20
ZTFLH:  P631.4  
基金资助:国家自然科学基金项目(42074133);中石油重大科技合作项目(ZD2019-183-003)
作者简介: 张敏(1983-),女,高级实验师,主要从事地震数据去噪、速度反演和地震波成像方面的研究工作。Email:zhangm@upc.edu.cn
引用本文:   
张敏, 许一卓, 易继东. 基于可伸缩型注意力机制的神经网络地震数据去噪方法[J]. 物探与化探, 2024, 48(4): 1065-1075.
ZHANG Min, XU Yi-Zhuo, YI Ji-Dong. A method for seismic data denoising based on the neural network with a retractable attention mechanism. Geophysical and Geochemical Exploration, 2024, 48(4): 1065-1075.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2024.1380      或      https://www.wutanyuhuatan.com/CN/Y2024/V48/I4/1065
Fig.1  STCNN网络模型
Fig.2  残差组
Fig.3  密集注意力(D-MSA)与稀疏自注意力(S-MSA)
a—密集注意力;b—稀疏注意力
Fig.4  合成地震数据的部分训练样本
Fig.5  实际地震数据的部分训练样本
Fig.6  合成的地震数据(a)及含噪地震数据(b)
Fig.7  3种去噪方法在合成地震数据中的测试结果
a—DnCNN去噪结果;b—DnCNN去除的噪声;c—a和b的局部相似图;d—Unet去噪结果;e—Unet去除的噪声;f—d和e的局部相似图;g—STCNN去噪结果;h—STCNN去除的噪声;i—g和h的局部相似图
Fig.8  3种去噪方法在合成地震数据测试中的f-k谱对比
a—干净地震数据的f-k谱;b—含噪地震数据的f-k谱;c—DnCNN去噪结果的f-k谱;d—Unet去噪结果的f-k谱;e—STCNN去噪结果的f-k谱;f—DnCNN去除噪声的f-k谱;g—Unet去除噪声的f-k谱;h—STCNN去除噪声的f-k
加入噪声水平 去噪算法 去噪后PSNR/dB 去噪后SSIM
σ= 10%
PSNR:18.45
DnCNN
Unet
STCNN
32.91
34.73
35.15
0.9712
0.9837
0.9901
σ= 20%
PSNR:12.57
DnCNN
Unet
STCNN
28.31
29.62
31.12
0.9015
0.9286
0.9474
σ= 50%
PSNR:5.36
DnCNN
Unet
STCNN
13.64
14.12
19.54
0.6845
0.6926
0.7687
Table 1  不同噪声水平下的去噪效果性能指标对比
Fig.9  3种网络的损失函数曲线
去噪方法 DnCNN Unet STCNN
训练时间/h 1.45 3.36 2.87
Table 2  3种去噪方法的运行时间对比
Fig.10  实际地震数据去噪结果
a—真实地震数据;b—DnCNN去噪结果;c—DnCNN去除的噪声;d—b和c的局部相似图;e—Unet去噪结果;f—Unet去除的噪声;g—e和f的局部相似图;h—STCNN去噪结果;i—STCNN去除的噪声;j—h和i的局部相似图
[1] Li J, Wu X, Hu Z. Deep learning for simultaneous seismic image super-resolution and denoising[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60(1):1-11.
[2] 曹静杰, 杨志权, 杨勇, 等. 一种基于曲波变换的自适应地震随机噪声消除方法[J]. 石油物探, 2018, 57(1):72-78.
doi: 10.3969/j.issn.1000-1441.2018.01.010
[2] Cao J J, Yang Z Q, Yang Y, et al. An adaptive seismic random noise elimination method based on Curvelet transform[J]. Geophysical Prospecting for Petroleum, 2018, 57(1):72-78.
doi: 10.3969/j.issn.1000-1441.2018.01.010
[3] 吴招才, 刘天佑. 地震数据去噪中的小波方法[J]. 地球物理学进展, 2008, 23(2):493-499.
[3] Wu Z C, Liu T Y. Wavelet method in seismic data attenuation[J]. Progress in Geophysics, 2008, 23(2):493-499.
[4] 张恒磊, 张云翠, 宋双, 等. 基于Curvelet域的叠前地震资料去噪方法[J]. 石油地球物理勘探, 2008, 43(5):508-513.
[4] Zhang H L, Zhang Y C, Song S, et al. Curvelet domain-based prestack seismic data denoise method[J]. Oil Geophysical Prospecting, 2008, 43(5):508-513.
[5] 孙苗苗, 李振春, 曲英铭, 等. 基于曲波域稀疏约束的OVT域地震数据去噪方法研究[J]. 石油物探, 2019, 58(2):208-218.
doi: 10.3969/j.issn.1000-1441.2019.02.006
[5] Sun M M, Li Z C, Qu Y M, et al. A seismic denoising method based on Curvelet transform with constraint in OVT domain[J]. Geophysical Prospecting for Petroleum, 2019, 58(2):208-218.
[6] 薛昭, 董良国, 单联瑜. Radon变换去噪方法的保幅性理论分析[J]. 石油地球物理勘探, 2012, 47(6):858-867.
[6] Xue Z, Dong L G, Shang L Y. Amplitude preservation theoretical analysis of Radon transforms denoising method[J]. Oil Geophysical Prospecting, 2012, 47(6):858-867.
[7] Liu C, Liu Y, Yang B J, et al. A 2D multistage median filter to reduce random seismic noise[J]. Geophysics, 2006, 71(5):V105-V110.
[8] 国胧予, 刘财, 刘洋, 等. 基于f-x域流式预测滤波器的地震随机噪声衰减方法[J]. 地球物理学报, 2020, 63(1):329-338.
doi: 10.6038/cjg2020N0030
[8] Guo L Y, Liu C, Liu Y, et al. Seismic random noise attenuation based on streaming prediction filter in the f-x domain[J]. Chinese Journal of Geophysics, 2020, 63(1):329-338.
[9] Naghizadeh M, Sacchi M. Multicomponent f-x seismic random noise attenuation via vector autoregressive operators[J]. Geophysics, 2012, 77(2):V91-V99.
[10] Witten B, Shragge J. Extended wave-equation imaging conditions for passive seismic data[J]. Geophysics, 2015, 80(6):WC61-WC72.
[11] 张良, 韩立国, 方金伟, 等. 双稀疏字典和FISTA的地震数据去噪[J]. 地球物理学报, 2019, 62(7):2071-2683.
[11] Zhang L, Han L G, Fang J W, et al. Seismic data denoising via double sparsity dictionary and fast iterative shrinkage-thresholding algorithm[J]. Chinese Journal of Geophysics, 2019, 62(7):2071-2683.
[12] 唐杰, 孟涛, 张文征, 等. 利用基于深度学习的过完备字典信号稀疏表示算法压制地震随机噪声[J]. 石油地球物理勘探, 2020, 55(6):1202-1209,1160.
[12] Tang J, Meng T, Zhang W Z, et al. Suppression of seismic random noise with overcomplete dictionary signal sparse representation algorithm based on deep learning[J]. Oil Geophysical Prospecting, 2020, 55(6):1202-1209,1160.
[13] 宋辉, 高洋, 陈伟, 等. 基于卷积降噪自编码器的地震数据去噪[J]. 石油地球物理勘探, 2020, 55(6):1210-1219,1160-1161.
[13] Song H, Gao Y, Chen W, et al. Seismic noise suppression based on convolutional denoising autoencoder[J]. Oil Geophysical Prospecting, 2020, 55(6):1210-1219,1160-1161.
[14] Wang Y Q, Lu W K, Liu J L, et al. Random seismic noise attenuation bas ed on data augmentation and CNN[J]. Chinese Journal of Geophysics, 2019, 62(1):421-433.
[15] 高好天, 孙宁娜, 孙可奕, 等. DnCNN和U-Net对地震随机噪声压制的对比分析[J]. 地球物理学进展, 2021, 36(6):2441-2453.
[15] Gao H T, Sun N N, Sun K Y, et al. Comparative analysis of DnCNN and U-Net on suppression of seismic random doise[J]. The Journal of China Universities of Posts and Telecommunications, 2021, 36(6):2441-2453.
[16] Wang F, Chen S. Residual learning of deep convolutional neural network for seismic random noise attenuation[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(8):1314-1318.
[17] 陈天, 易远元. 基于深度卷积神经网络的地震数据随机噪声压制[J]. 地震学报, 2021, 43(4):474-482,533.
[17] Chen T, Yi Y Y. Random noise suppression of seismic data based on deep convolutional neural network[J]. Acta Seismologica Sinica, 2021, 43(4):474-482,533.
[18] Si X, Yuan Y, Si T, et al. Attenuation of Random noise using denoising convolutional neural networks[J]. Interpretation, 2019, 7(3):SE269-SE280.
[19] 王钰清, 陆文凯, 刘金林, 等. 基于数据增广和CNN的地震随机噪声压制[J]. 地球物理学报, 2019, 62(1):421-433.
doi: 10.6038/cjg2019M0385
[19] Wang Y Q, Lu W K, Liu J L, et al. Random seismic noise attention based on data augmentation and CNN[J]. Chinese Journal of Geophysics, 2019, 62(1):421-433.
[20] 罗仁泽, 李阳阳. 一种基于RUnet卷积神经网络的地震资料随机噪声压制方法[J]. 石油物探, 2020, 59(1):51-59.
doi: 10.3969/j.issn.1000-1441.2020.01.006
[20] Luo R Z, Li Y Y. Random seismic noise attenuation based on RUnet convolutional neural network[J]. Geophysical Prospecting for Petroleum, 2020, 59(1):51-59.
doi: 10.3969/j.issn.1000-1441.2020.01.006
[21] Yang L, Chen W, Wang H, et al. Deep learning seismic random noise attenuation via improved residual convolutional neural network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(9):7968-7981.
[22] 杨翠倩, 周亚同, 何昊, 等. 基于全局上下文和注意力机制深度卷积神经网络的地震数据去噪[J]. 石油物探, 2021, 60(5):751-762,855.
doi: 10.3969/j.issn.1000-1441.2021.05.006
[22] Yang C Q, Zhou Y T, He H, et al. Global context and attention-based deep convolutional neural network for seismic data denoising[J]. Geophysical Prospecting for Petroleum, 2021, 60(5):751-762,855.
doi: 10.3969/j.issn.1000-1441.2021.05.006
[23] 周文辉, 石敏, 朱登明, 等. 基于残差注意力网络的地震数据超分辨率方法[J]. 计算机科学, 2021, 48(8):24-31.
doi: 10.11896/jsjkx.200900034
[23] Zhou W H, Shi M, Zhu D M, et al. Seismic data super-resolution method based on residual attention network[J]. Computer Science, 2021, 48(8):24-31.
[24] Liu Z, Lin Y T, Cao Y, et al. Swin transformer:Hierarchical vision transformer using shifted windows[C]// Montreal:2021 IEEE/CVF International Conference on Computer Vision(ICCV), 2021:9992-10002.
[25] Cao H, Wang Y Y, Chen J, et al. Swin-Unet:Unet-like pure transformer for medical image segmentation[J]. Image and Video Processing, 2021.
[26] Fan C M, Liu T J, Liu K H. SUNet:Swin transformer UNet for image denoising[C]// Austin:2022 IEEE International Symposium on Circuits and Systems(ISCAS), 2022:2333-2337.
[27] Zhang K, Li Y, Liang J, et al. Practical blind image denoising via swin-conv-UNet and data synthesis[J]. Machine Inteligence Research, 2023, 20(6):822-836.
[1] 郑孝诚, 张明华, 任伟. 卷积神经网络在山东金矿勘查预测中的应用[J]. 物探与化探, 2023, 47(6): 1433-1440.
[2] 王康, 刘彩云, 熊杰, 王永昌, 胡焕发, 康佳帅. 基于全卷积残差收缩网络的地震波阻抗反演[J]. 物探与化探, 2023, 47(6): 1538-1546.
[3] 周慧, 孙成禹, 刘英昌, 蔡瑞乾. 基于DC-UNet卷积神经网络的强噪声压制方法[J]. 物探与化探, 2023, 47(5): 1288-1297.
[4] 王金刚, 安勇, 徐振旺. 基于Shearlet变换的非局部均值地震噪声压制[J]. 物探与化探, 2023, 47(1): 199-207.
[5] 石战战, 庞溯, 王元君, 池跃龙, 周强. 基于f-x域时频非凸正则化低秩矩阵近似的共偏移距道集去噪方法[J]. 物探与化探, 2022, 46(6): 1444-1453.
[6] 崔亚彤, 王胜侯, 蔡忠贤. 基于快速自适应非局部均值滤波的地震随机噪声压制方法[J]. 物探与化探, 2022, 46(5): 1187-1195.
[7] 梁立锋, 刘秀娟, 张宏兵, 陈程浩, 陈锦华. 超参数对GRU-CNN混合深度学习弹性阻抗反演影响研究[J]. 物探与化探, 2021, 45(1): 133-139.
[8] 黄华, 李忠生, 郑革辉, 吴大林, 王中圣, 袁子恒. 震源车压制城市噪声机理及效果分析[J]. 物探与化探, 2020, 44(4): 803-809.
[9] 王逸宸, 柳林涛, 许厚泽. 基于卷积神经网络识别重力异常体[J]. 物探与化探, 2020, 44(2): 394-400.
[10] 郭奇, 曾昭发, 于晨霞, 张思萌. 基于高精度字典学习算法的地震随机噪声压制[J]. 物探与化探, 2017, 41(5): 907-913.
[11] 贾春梅, 姜国庆, 刘志成, 许璐. 频域稀疏双曲Radon变换去噪方法[J]. 物探与化探, 2016, 40(3): 527-533.
[12] 薛永安, 王勇, 李红彩, 陆树勤. 改进的曲波变换及全变差联合去噪技术[J]. 物探与化探, 2014, 38(1): 81-86.
[13] 冯飞, 王德利, 张亚红, 刘伟明, 朱恒. 结合曲波变换的焦点变换 在地震数据去噪和插值中的应用[J]. 物探与化探, 2013, 37(3): 480-487.
[14] 冯寅, 刘庆成. 对K-L变换滤波技术的评价[J]. 物探与化探, 2009, 33(4): 462-467.
[15] 钟凌云. 小波变换方法在地震资料噪声消除中的应用[J]. 物探与化探, 2007, 31(3): 245-249.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com