Please wait a minute...
E-mail Alert Rss
 
物探与化探  2025, Vol. 49 Issue (4): 790-801    DOI: 10.11720/wtyht.2025.1346
  地质调查资源勘查 本期目录 | 过刊浏览 | 高级检索 |
鄂西黄陵背斜周缘震旦系灯影组白云岩成因分析
李浩涵1,2(), 张聪1,2(), 李文正3,4, 张春贺1,2, 张远1,2, 王梓1,2, 陈维堃1,2, 方镕慧1,2
1.中国地质调查局 油气资源调查中心, 北京 100083
2.多资源协同陆相页岩油绿色开采全国重点实验室, 黑龙江 大庆 163712
3.中国石油杭州地质研究院, 浙江 杭州 310023
4.中国石油天然气集团公司 碳酸盐岩储集层重点实验室, 浙江 杭州 310023
Genetic analysis of dolomites in the Sinian Dengying Formation on the periphery of the Huangling anticline, western Hubei Province
LI Hao-Han1,2(), ZHANG Cong1,2(), LI Wen-Zheng3,4, ZHANG Chun-He1,2, ZHANG Yuan1,2, WANG Zi1,2, CHEN Wei-Kun1,2, FANG Rong-Hui1,2
1. Oil and Gas Survey, China Geological Survey, Beijing 100083, China
2. State Key Laboratory of Continental Shale Oil, Daqing 163712, China
3. Hangzhou Research Institute of Geology, PetroChina, Hangzhou 310023, China
4. Key Laboratory of Carbonate Reservoirs, China National Petroleum Corporation, Hangzhou 310023, China
全文: PDF(6072 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 鄂西克拉通内裂陷东部黄陵背斜震旦系灯影组发育一套以白云岩为主的碳酸盐岩储层,开展白云岩形成环境和成因机制研究对该地区碳酸盐岩储层发育机制和常规油气勘探具有重要作用。本文利用铸体薄片、阴极发光薄片、场发射扫描电镜、碳酸盐岩碳氧同位素分析、主微量元素分析、全岩矿物分析和白云岩有序度测定等方法,分析了黄陵背斜周缘灯影组白云岩化学元素组成和岩石矿物学特征,进而对白云岩的形成环境、发育机制和改造过程进行了研究。结果表明,灯影组白云岩的CaO和MgO分子数比例为1∶1,Sr含量较低,符合准同生白云岩特征;微量元素、碳氧同位素分析结果证明其形成于Fe、Mn含量较低的海水环境,古海水盐度(Z)平均值为128.41,平均温度21.32 ℃,平均成岩温度为49.36 ℃,具备形成准同生白云岩的环境条件。同时,灯影组白云石氧同位素δ18O显著低于灯影期海水,白云石有序度为0.61~0.99,频率峰值分布于0.8~0.9之间,证明其经历过逐步加深的深埋藏改造作用;全岩矿物分析结果证明白云石含量与有序度呈正相关,反映了在埋藏改造过程中白云石化程度越高,白云石有序度也越高。由此认为本地区灯影组白云岩原始成因为早期准同生白云石,后经长期埋藏改造,低有序度的泥晶白云石发生重结晶作用, 逐渐向粉晶、细晶白云石转化,同时白云石有序度升高,最终形成准同生——埋藏改造成因白云岩。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李浩涵
张聪
李文正
张春贺
张远
王梓
陈维堃
方镕慧
关键词 黄陵背斜灯影组白云石成因白云石有序度成岩环境    
Abstract

A suite of dolomite-dominated carbonate reservoirs is developed in the Sinian Dengying Formation in the Huangling anticline in the eastern part of the intracratonic rift, western Hubei Province. Investigating the formation environment and genetic mechanism of dolomites is crucial for determining the developmental mechanism of carbonate reservoirs and facilitating conventional oil and gas exploration in the study area. This study employed various analytical techniques, including cast thin sections, cathodoluminescence thin sections, field emission scanning electron microscopy, carbon and oxygen isotope analyses of carbonate rocks, major and trace element analyses, whole-rock mineral analyses, and determination of the degree of order of dolomite. Using these techniques, this study analyzed the chemical composition and mineralogical characteristics of dolomites from the Dengying Formation on the periphery of the Huangling anticline. Furthermore, this study explored the formation environment, developmental mechanism, and modification process of dolomites. The results indicate that the dolomites from the Dengying Formation contained the same proportions of CaO and MgO molecules and low Sr content, aligning with the characteristics of penecontemporaneous dolomites. The analytical results of trace elements and carbon and oxygen isotopes confirm that the dolomites formed in a marine environment with low Fe and Mn contents. The average paleoseawater salinity (Z) of 128.41, average temperature of 21.32 ℃, and average diagenetic temperature of 49.36 ℃ created the favorable environmental conditions for forming penecontemporaneous dolomites. Additionally, the dolomite from the Dengying Formation exhibited significantly lower δ18O compared to the Dengyingian seawater, degrees of order ranging from 0.61 to 0.99, and a peak frequency distribution between 0.8 and 0.9, indicating that the dolomite experienced a progressively deepening burial modification process. The whole-rock mineral analyses reveal that the content of dolomite was positively correlated with its degree of order, suggesting that a high degree of dolomitization corresponded to a higher degree of order during burial modification. Therefore, this study holds that dolomites in the Dengying Formation were originally formed by penecontemporaneous dolomite. Through prolonged burial modification, micritic dolomite with a low degree of order experienced recrystallization, gradually transitioning into very finely crystalline/finely crystalline dolomite, accompanied by an elevated degree of order. Ultimately, dolomites of a penecontemporaneous-burial modification origin formed in the study area.

Key wordsHuangling anticline    Dengying Formation    dolomite origin    degree of order of dolomite    diagenetic environment
收稿日期: 2024-08-16      修回日期: 2025-02-19      出版日期: 2025-08-20
ZTFLH:  P632  
基金资助:国家自然科学基金青年基金项目(42302177);国家自然科学基金项目(U2244208);中国地质调查局地质调查项目(DD20240050)
通讯作者: 张聪(1986-),女,博士,教授级高工,从事非常规油气分析测试研究工作。Email:zh_cong520@qq.com
作者简介: 李浩涵(1986-),男,硕士,高级工程师,从事非常规油气调查研究工作。Email:akazan@126.com
引用本文:   
李浩涵, 张聪, 李文正, 张春贺, 张远, 王梓, 陈维堃, 方镕慧. 鄂西黄陵背斜周缘震旦系灯影组白云岩成因分析[J]. 物探与化探, 2025, 49(4): 790-801.
LI Hao-Han, ZHANG Cong, LI Wen-Zheng, ZHANG Chun-He, ZHANG Yuan, WANG Zi, CHEN Wei-Kun, FANG Rong-Hui. Genetic analysis of dolomites in the Sinian Dengying Formation on the periphery of the Huangling anticline, western Hubei Province. Geophysical and Geochemical Exploration, 2025, 49(4): 790-801.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2025.1346      或      https://www.wutanyuhuatan.com/CN/Y2025/V49/I4/790
Fig.1  研究区灯影期沉积相及灯影组地层柱状图(据李文正等[14]修改)
Fig.2  灯影组白云岩岩相类型薄片特征
a—QLK-23号样品单偏光镜下照片;b—QLK-23号样品正交光镜下照片;c—QLK-23号样品阴极光镜下照片;d—QLK-11号样品单偏光镜下照片;e—QLK11号样品正交光镜下照片;f—QLK-11号样品阴极光镜下照片
Fig.3  灯影组白云岩场发射扫描电镜照片
a—QLK-23号样品全貌,白云石晶体以自形为主,晶间孔发育(×500);b—照片a局部放大,白云石以自形的菱面体为主,晶体间发育晶间孔(×1000);c—照片b局部放大,白云石晶间孔发育(×2000);d—QLK-11号样品全貌,白云石晶体以自形为主,晶间孔发育 (×500);e—照片d局部放大,白云石以自形的菱面体为主,晶体间发育晶间孔(×1000);f—照片e局部放大,白云石晶间孔发育(×2000)

样品编号 岩性 微量元素含量/10-6 主量元素含量/% 碳氧同位素
Sr
光谱
Sr
质谱
Mn Fe w(Fe)/
w(Mn)
w(Mn)/
w(Sr)
SiO2 Al2O3 CaO MgO δC13/
PDB,‰
δO18/
PDB,‰
古盐度指
标(Z)
古海水温
T/℃
成岩温
T/℃
1 QLK-01 粉—泥晶白云岩 61.94 86.6 97.70 357.78 3.66 1.13 0.50 0.18 32.37 23.08 -2.29 -6.55 119.35 17.96 45.57
2 QLK-02 纹层状泥质泥晶白云岩 149.91 99.5 94.20 5374.44 57.05 0.95 6.82 1.81 27.51 20.80 1.89 -7.45 127.46 21.9 50.19
3 QLK-03 粉—泥晶硅质灰岩 479.53 43 190.10 62.22 0.33 4.42 13.29 0.06 26.33 20.03 3.54 -5.45 131.84 13.42 40
4 QLK-04 粒屑粉—泥晶灰岩 2683.77 1361 34.20 / 0.00 0.03 1.52 0.05 53.66 1.48 2.65 -6.3 129.59 16.9 44.29
5 QLK-05 泥—粉晶白云岩 2462.38 77.1 169.90 147.78 0.87 2.20 0.68 0.10 32.57 23.07 3.83 -6.65 131.83 18.39 46.08
6 QLK-06 细晶含灰白云岩 1994.75 67.1 216.80 132.22 0.61 3.23 0.72 0.09 32.64 22.74 5.03 -5.39 134.92 13.19 39.7
7 QLK-07 泥—粉晶白云岩 1090.57 90.5 166.90 482.22 2.89 1.84 0.30 0.11 32.68 20.55 3.89 -6.56 132 18 45.62
8 QLK-08 粉—细晶白云岩 2573.67 63.2 144.10 4106.67 28.50 2.28 5.58 1.58 27.91 18.56 3.81 -5.99 132.12 15.61 42.72
9 QLK-09 粉—细晶白云岩 1620.55 1528.4 / 38.89 / / 0.45 0.08 54.03 1.38 3.77 -5.27 132.4 12.71 39.1
10 QLK-10 泥—粉晶云质灰岩 984.39 397.6 2.50 15.56 6.22 0.01 3.77 0.15 50.88 1.63 1.61 -8.22 126.5 25.44 54.2
11 QLK-11 粉—细晶灰质白云岩 1463.82 1149.4 19.40 / 0.00 0.02 2.23 0.08 54.13 0.63 3.68 -6.07 131.81 15.94 43.12
12 QLK-12 粉—细晶灰质白云岩 664.52 73.9 139.80 70.00 0.50 1.89 4.43 0.16 30.83 22.19 2.82 -7.95 129.12 24.18 52.79
13 QLK-13 粉—细晶白云质灰岩 1192.04 117.3 116.80 2107.78 18.05 1.00 1.28 0.34 32.33 19.40 3.07 -7.08 130.06 20.26 48.28
14 QLK-14 泥—粉晶白云岩 1308.22 684.5 337.10 124.44 0.37 0.49 2.51 0.21 39.91 14.44 1.03 -9.78 124.54 33.09 62.47
15 QLK-15 粉—细晶云质灰岩 861.54 2027.9 10.70 7.78 0.73 0.01 17.43 0.16 40.02 1.73 1.31 -9.7 125.15 32.68 62.04
16 QLK-16 粉晶含灰白云岩 1702.04 36.6 68.40 31.11 0.45 1.87 0.16 0.05 32.54 23.31 2.93 -6.95 129.84 19.68 47.61
17 QLK-17 粉—细晶白云岩 2327.16 2073.7 12.70 140.00 11.02 0.01 1.79 0.14 51.02 3.33 3.53 -6.08 131.5 15.98 43.18
18 QLK-18 粉晶白云岩 1841.99 64.3 87.50 248.89 2.84 1.36 0.13 0.06 32.92 22.77 2.95 -6.81 129.95 19.08 46.89
19 QLK-19 粉—泥晶白云岩 62.49 1687.1 19.50 7.78 0.40 0.01 14.35 0.11 41.48 2.47 2.48 -7.81 128.49 23.54 52.06
20 QLK-20 粉—泥晶白云岩 57.44 95.8 99.90 132.22 1.32 1.04 0.31 0.16 33.45 22.37 1.23 -8.04 125.82 24.6 53.26
21 QLK-21 泥—粉晶白云岩 63.87 857.5 204.50 4876.67 23.85 0.24 16.56 2.99 32.59 4.55 2.16 -7.86 127.81 23.77 52.32
22 QLK-22 泥—粉晶白云岩 81.86 1029.4 106.40 1796.67 16.89 0.10 6.73 1.03 45.38 2.38 2.35 -7.8 128.23 23.49 52.01
23 QLK-23 泥—粉晶白云岩 60.23 173.1 154.50 248.89 1.61 0.89 1.23 0.21 32.77 22.10 0.87 -7.57 125.31 22.44 50.81
24 QLK-24 泥—粉晶白云岩 102.88 73.9 101.40 256.67 2.53 1.37 0.27 0.12 32.74 23.12 1.18 -7.04 126.21 20.08 48.08
25 YX-01 泥—粉晶白云岩 54.88 100.1 207.80 7.78 0.04 2.08 0.75 0.06 32.89 22.87 3.35 -6.25 131.05 16.69 44.04
26 YX-02 泥—粉晶白云岩 42.51 936.3 24.50 116.67 4.76 0.03 2.41 0.14 52.39 1.25 1.97 -6.85 127.92 19.25 47.1
27 YX-03 泥—粉晶白云岩 87.58 283.7 7.10 / 0.00 0.03 1.24 0.05 54.06 1.28 1.55 -4.17 128.4 8.54 33.64
28 YX-04 粉—泥晶白云岩 82.75 92.1 76.70 132.22 1.72 0.83 0.67 0.10 32.61 23.06 1.95 -8.34 127.14 26.01 54.83
29 YX-05 粉—泥晶白云岩 64.72 46.4 178.70 85.56 0.48 3.85 25.64 0.06 20.82 17.36 -1.28 -8.6 120.4 27.25 56.2
30 YX-06 粉—泥晶白云岩 57.01 39.1 140.90 225.56 1.60 3.60 0.29 0.06 32.36 23.23 1.96 -8.06 127.3 24.69 53.36
31 YX-07 粉—泥晶含硅白云岩 37.75 49.2 256.60 70.00 0.27 5.22 0.63 0.05 32.56 22.62 / / / / /
32 YX-08 粉—泥晶白云岩 36.41 82.8 73.10 342.22 4.68 0.88 29.55 0.12 19.56 16.47 3 -8.83 129.05 28.36 57.41
33 YX-09 粉—泥晶白云岩 43.43 79.2 154.20 85.56 0.55 1.95 1.09 0.05 32.08 22.28 2.65 -8.41 128.54 26.34 55.2
34 YX-10 泥—粉晶白云岩 61.82 1128.6 12.20 303.33 24.86 0.01 24.17 0.24 31.96 4.81 3.38 -7.98 130.25 24.32 52.95
35 YX-11 粉—泥晶白云岩 67.23 76.2 201.30 70.00 0.35 2.64 8.10 0.08 28.51 21.23 1.74 -8.1 126.83 24.88 53.57
36 YX-12 粒屑粉—泥晶白云岩 71.48 1354.8 0.80 85.56 106.94 0.00 6.29 0.12 46.72 3.24 2.29 -7.72 128.15 23.13 51.59
37 YX-13 含粒屑粉—泥晶白云岩 32.58 787.3 55.90 93.33 1.67 0.07 0.95 0.11 54.04 1.37 0.73 -7.31 125.15 21.27 49.47
38 YX-14 粉—细晶白云岩 79.11 9.5 9.50 202.22 21.29 1.00 3.76 0.21 50.34 1.78 2.91 -8.27 129.14 25.68 54.46
Table 1  鄂西地区佑溪、青林口剖面主量元素、微量元素和碳氧同位素数据

样品
编号
矿物含量/% 白云石
有序度
方解石 白云石 石英 钾长石 斜长石
1 QLK-01 14 86 / / / 0.67
2 QLK-02 / 68 24 8 / 0.61
3 QLK-03 / 99 1 / / 0.99
4 QLK-04 3 90 5 / 2 /
5 QLK-05 / 99 / / 1 /
6 QLK-06 10 86 4 / / /
7 QLK-07 / 90 10 / / 0.82
8 QLK-08 / 87 13 / / 0.74
9 QLK-09 17 83 / / / 0.74
10 QLK-10 / 97 / 2 1 /
11 QLK-11 6 93 / / 1 /
12 QLK-12 / 86 11 3 / 0.57
13 QLK-13 / 93 / 7 / /
14 QLK-14 14 86 / / / 0.76
15 QLK-15 / 85 / 15 / 0.77
16 QLK-16 / 96 4 / / /
17 QLK-17 / 89 11 / / /
18 QLK-18 / 85 10 / 5 /
19 QLK-19 / 85 15 / / 0.82
20 QLK-20 / 92 / 8 / 0.78
21 QLK-21 / 98 / 1 1 0.9
22 QLK-22 / 96 4 / / 0.85
23 QLK-23 / 93 6 1 / 0.81
24 QLK-24 / 95 4 1 / 0.85
25 YX-01 / 100 / / / 0.9
26 YX-02 / 99 1 / / 0.96
27 YX-03 / 89 1 / 10 /
28 YX-04 / 96 4 / / 0.85
29 YX-05 / 96 2 2 / 0.83
30 YX-06 2 93 / 5 / 0.8
31 YX-07 / 90 10 / / 0.84
32 YX-08 6 80 10 4 / 0.79
33 YX-09 / 91 5 3 1 0.82
34 YX-10 / 94 5 1 / 0.83
35 YX-11 / 94 / 5 1 0.84
36 YX-12 / 93 2 5 / 0.88
37 YX-13 / 99 / 1 / 0.97
38 YX-14 / 100 / / / 0.94
Table 2  矿物含量与白云石有序度数据
Fig.4  CaO和MgO含量关系
Fig.5  Sr元素含量分布直方图
Fig.6  白云石有序度分布直方图(n=28)
Fig.7  白云石含量与白云石有序度关系
Fig.8  黄陵背斜周缘震旦系灯影组白云岩成因模式
a—震旦纪末期灯影组强烈蒸发条件下的高盐海水环境下,白云石迅速结晶生成低有序度的泥晶白云石;b—侏罗纪末期灯影组埋深达到最大,白云石经过深埋改造、重结晶作用形成高有序度的粉晶白云岩;c—抬升过程中灯影组出露地表,接受改造作用
[1] 杜金虎, 邹才能, 徐春春, 等. 川中古隆起龙王庙组特大型气田战略发现与理论技术创新[J]. 石油勘探与开发, 2014, 41(3):268-277.
[1] Du J H, Zou C N, Xu C C, et al. Theoretical and technical innovations in strategic discovery of a giant gas field in Cambrian Longwangmiao Formation of central Sichuan paleo-uplift,Sichuan Basin[J]. Petroleum Exploration and Development, 2014, 41(3):268-277.
[2] 邹才能, 杜金虎, 徐春春, 等. 四川盆地震旦系—寒武系特大型气田形成分布、资源潜力及勘探发现[J]. 石油勘探与开发, 2014, 41(3):278-293.
[2] Zou C N, Du J H, Xu C C, et al. Formation, distribution,resource potential and discovery of the Sinian-Cambrian giant gas field,Sichuan Basin,SW China[J]. Petroleum Exploration and Development, 2014, 41(3):278-293.
[3] 晋达, 杜浩坤, 孟凡冰, 等. 普光地区长兴组生物礁储层分布预测[J]. 物探与化探, 2020, 44(1):50-58.
[3] Jin D, Du H K, Meng F B, et al. The prediction of reef reservoir distribution in Changxing Formation of Puguang area[J]. Geophysical and Geochemical Exploration, 2020, 44(1):50-58.
[4] 李忠权, 刘记, 李应, 等. 四川盆地震旦系威远—安岳拉张侵蚀槽特征及形成演化[J]. 石油勘探与开发, 2015, 42(1):26-33.
[4] Li Z Q, Liu J, Li Y, et al. Formation and evolution of Weiyuan-Anyue extension-erosion groove in Sinian system,Sichuan Basin[J]. Petroleum Exploration and Development, 2015, 42(1):26-33.
[5] 李双建, 高平, 黄博宇, 等. 四川盆地绵阳—长宁凹槽构造演化的沉积约束[J]. 石油与天然气地质, 2018, 39(5):889-898.
[5] Li S J, Gao P, Huang B Y, et al. Sedimentary constraints on the tectonic evolution of Mianyang-Changning trough in the Sichuan Basin[J]. Oil & Gas Geology, 2018, 39(5):889-898.
[6] 汪泽成, 赵文智, 胡素云, 等. 克拉通盆地构造分异对大油气田形成的控制作用——以四川盆地震旦系—三叠系为例[J]. 天然气工业, 2017, 37(1):9-23.
[6] Wang Z C, Zhao W Z, Hu S Y, et al. Control of tectonic differentiation on the formation of large oil and gas fields in craton basins:A case study of Sinian-Triassic of the Sichuan Basin[J]. Natural Gas Industry, 2017, 37(1):9-23.
[7] 赵文智, 魏国齐, 杨威, 等. 四川盆地万源—达州克拉通内裂陷的发现及勘探意义[J]. 石油勘探与开发, 2017, 44(5):659-669.
doi: 10.11698/PED.2017.05.01
[7] Zhao W Z, Wei G Q, Yang W, et al. Discovery of Wanyuan-Dazhou intracratonic rift and its exploration significance in the Sichuan basin,SW China[J]. Petroleum Exploration and Development, 2017, 44(5):659-669.
[8] 李茜, 朱光有, 张志遥. 超深层白云岩成因与规模储层控制因素——以四川盆地震旦系灯影组和寒武系龙王庙组为例[J]. 中国科学:地球科学, 2024, 54(7):2389-2418.
[8] Li X, Zhu G Y, Zhang Z Y. Genesis of ultra-deep dolostone and controlling factors of large-scale reservoir:A case study of the Sinian Dengying Formation and the Cambrian Longwangmiao Formation in the Sichuan Basin[J]. Scientia Sinica:Terrae, 2024, 54(7):2389-2418.
[9] 唐军, 刘沁园, 赖强, 等. 白云岩声电各向异性实验测量及分析[J]. 物探与化探, 2022, 46(6):1492-1499.
[9] Tang J, Liu Q Y, Lai Q, et al. Experimental measurement and analysis of the acoustic-electrical anisotropy of dolomites[J]. Geophysical and Geochemical Exploration, 2022, 46(6):1492-1499.
[10] 王坤, 王铜山, 汪泽成, 等. 华北克拉通南缘长城系裂谷特征与油气地质条件[J]. 石油学报, 2018, 39(5):504-517.
doi: 10.7623/syxb201805002
[10] Wang K, Wang T S, Wang Z C, et al. Characteristics and hydrocarbon geological conditions of the Changchengian rifts in the southern North China Craton[J]. Acta Petrolei Sinica, 2018, 39(5):504-517.
doi: 10.7623/syxb201805002
[11] 谭秀成, 何如意, 杨文杰, 等. 四川盆地武胜—潼南地区中二叠统茅口组二段下亚段白云岩薄储层成因及分布模式[J]. 石油勘探与开发, 2025, 52(1):1-16.
[11] Tan X C, He R Y, Yang W J, et al. Origin and distribution model of thin dolomite reservoir in the lower sub-member of Mao 2 member of middle Permian Maokou Formation in Wusheng-Tongnan area,Sichuan Basin,SW China[J]. Petroleum Exploration and Development, 2025, 52(1):1-16.
[12] 许文龙, 袁海锋, 肖钦仁, 等. 川西地区中二叠统栖霞组白云岩成因——以江油通口栖霞组剖面为例[J/OL]. 天然气地球科学,1-31[2025-02-17].http://kns.cnki.net/kcms/detail/62.1177.TE.20241220.1608.004.html.
[12] Xu W L, Yuan H F, Xiao Q R, et al. Genesis of dolomites of the Middle Permian Qixia Formation in western Sichuan Basin:A case study of the Qixia Formation section of Tongkou,Jiangyou[J/OL]. Natural Gas Geoscience,1-31 [2025-02-17].http://kns.cnki.net/kcms/detail/62.1177.TE.20241220.1608.004.html.
[13] 汪泽成, 刘静江, 姜华, 等. 中—上扬子地区震旦纪陡山沱组沉积期岩相古地理及勘探意义[J]. 石油勘探与开发, 2019, 46(1):39-51.
doi: 10.11698/PED.2019.01.04
[13] Wang Z C, Liu J J, Jiang H, et al. Lithofacies paleogeography and exploration significance of Sinian Doushantuo depositional stage in the middle-Upper Yangtze region,Sichuan Basin,SW China[J]. Petroleum Exploration and Development, 2019, 46(1):39-51.
[14] 李文正, 张建勇, 李浩涵, 等. 鄂西—渝东地区克拉通内裂陷分布特征及油气勘探意义[J]. 天然气地球科学, 2020, 31(5):675-685.
doi: 10.11764/j.issn.1672-1926.2020.04.016
[14] Li W Z, Zhang J Y, Li H H, et al. Distribution characteristics of intracratonic rift and its exploration significance in western Hubei and eastern Chongqing area[J]. Natural Gas Geoscience, 2020, 31(5):675-685.
[15] 翟刚毅, 包书景, 王玉芳, 等. 古隆起边缘成藏模式与湖北宜昌页岩气重大发现[J]. 地球学报, 2017, 38(4):441-447.
[15] Zhai G Y, Bao S J, Wang Y F, et al. Reservoir accumulation model at the edge of Palaeohigh and significant discovery of shale gas in Yichang area,Hubei Province[J]. Acta Geoscientica Sinica, 2017, 38(4):441-447.
[16] 翟刚毅, 包书景, 庞飞, 等. 武陵山复杂构造区古生界海相油气实现重大突破[J]. 地球学报, 2016, 37(6):657-662,795.
[16] Zhai G Y, Bao S J, Pang F, et al. Breakthrough of the natural gas of Paleozoic marine strata in Wuling Mountain complex tectonic zone[J]. Acta Geoscientica Sinica, 2016, 37(6):657-662,795.
[17] 陈科, 翟刚毅, 包书景, 等. 华南黄陵隆起构造演化及其对页岩气保存的控制作用[J]. 中国地质, 2020, 47(1):161-172.
[17] Chen K, Zhai G Y, Bao S J, et al. Tectonic evolution of the Huangling uplift and its control effect on shale gas preservation in South China[J]. Geology in China, 2020, 47(1):161-172.
[18] 李浩涵, 陈科, 包书景, 等. 鄂西黄陵背斜南翼震旦系陡山沱组有利目标区页岩气资源潜力评价[J]. 石油实验地质, 2019, 41(1):31-37.
[18] Li H H, Chen K, Bao S J, et al. Evaluation of shale gas resources of the Sinian Doushantuo Formation in the southern Huangling anticline,western Hubei Province[J]. Petroleum Geology & Experiment, 2019, 41(1):31-37.
[19] 李浩涵, 宋腾, 陈科, 等. 鄂西地区(秭地2井)震旦纪地层发现页岩气[J]. 中国地质, 2017, 44(4):812-813.
[19] Li H H, Song T, Chen K, et al. The discovery of shale gas from Sinian Formation at ZD-2 well in western Hubei[J]. Geology in China, 2017, 44(4):812-813.
[20] 王宗哲, 杨杰东, 孙卫国. 扬子地台震旦纪海水碳同位素的变化[J]. 高校地质学报, 1996, 2(1):112-120.
[20] Wang Z Z, Yang J D, Sun W G. Carbon isotope record of sinian seawater in Yangtze platform[J]. Geological Journal of Universitiesf, 1996, 2(1):112-120.
[21] Kaufman A J, Knoll A H. Neoproterozoic variations in the C-isotopic composition of seawater:Stratigraphic and biogeochemical implications[J]. Precambrian Research, 1995, 73(1-4):27-49.
[22] Kaufman A J, Jacobsen S B, Knoll A H. The Vendian record of Sr and C isotopic variations in seawater:Implications for tectonics and paleoclimate[J]. Earth and Planetary Science Letters, 1993, 120(3-4):409-430.
[23] 钟倩倩, 黄思静, 邹明亮, 等. 碳酸盐岩中白云石有序度的控制因素——来自塔河下古生界和川东北三叠系的研究[J]. 岩性油气藏, 2009, 21(3):50-55.
[23] Zhong Q Q, Huang S J, Zou M L, et al. Controlling factors of order degree of dolomite in carbonate rocks:A case study from Lower Paleozoic in Tahe Oilfield and Triassic in northeastern Sichuan Basin[J]. Lithologic Reservoirs, 2009, 21(3):50-55.
[24] 黄思静, Qing H R, 胡作维, 等. 封闭系统中的白云石化作用及其石油地质学和矿床学意义——以四川盆地东北部三叠系飞仙关组碳酸盐岩为例[J]. 岩石学报, 2007, 23(11):2955-2962.
[24] Huang S J, Qing H R, Hu Z W, et al. Closed-system dolomitization and the significance for petroleum and economic geology:An example from Feixianguan carbonates,Triassic NE Sichuan basin of China[J]. Acta Petrologica Sinica, 2007, 23(11):2955-2962.
[25] 方少仙, 侯方浩, 董兆雄. 上震旦统灯影组中非叠层石生态系兰细菌白云岩[J]. 沉积学报, 2003, 21(1):96-105.
[25] Fang S X, Hou F H, Dong Z X. Non-stromatoltite ecologic system cyanobacteria dolostone in dengying formation of upper-sinian[J]. Acta Sedimentologica Sinica, 2003, 21(1):96-105.
[26] 孙健, 董兆雄, 郑琴. 白云岩成因的研究现状及相关发展趋势[J]. 海相油气地质, 2005, 10(3):25-30.
[26] Sun J, Dong Z X, Zheng Q. Study actuality and trend on origin of dolostone[J]. Marine Origin Petoleum Geology, 2005, 10(3):25-30.
[27] 何勇, 刘波, 刘红光, 等. 塔里木盆地西北缘通古孜布隆剖面下奥陶统蓬莱坝组白云石化流体来源及白云岩成因分析[J]. 北京大学学报:自然科学版, 2018, 54(4):781-791.
[27] He Y, Liu B, Liu H G, et al. Origin of Mg-rich-fluids and dolomitization of lower Ordovician penglaiba formation at tongguzibulong outcrop in the northwestern margin of Tarim basin[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2018, 54(4):781-791.
[28] 郑剑锋, 沈安江, 刘永福, 等. 塔里木盆地寒武—奥陶系白云岩成因及分布规律[J]. 新疆石油地质, 2011, 32(6):600-604.
[28] Zheng J F, Shen A J, Liu Y F, et al. Genesis and distribution of the Cambro-Ordovician dolomite in Tarim Basin[J]. Xinjiang Petroleum Geology, 2011, 32(6):600-604.
[29] 陈永权, 周新源, 赵葵东, 等. 塔里木盆地中寒武统泥晶白云岩红层的地球化学特征与成因探讨[J]. 高校地质学报, 2008, 14(4):583-592.
[29] Chen Y Q, Zhou X Y, Zhao K D, et al. Geochemical research on middle Cambrian red dolostones in Tarim Basin:Implications for dolostone genesis[J]. Geological Journal of China Universities, 2008, 14(4):583-592.
[30] 黄思静, 李小宁, 兰叶芳, 等. 海水胶结作用对碳酸盐岩石组构的影响:以四川盆地东北部三叠系飞仙关组为例[J]. 中南大学学报:自然科学版, 2013, 44(12):5007-5018.
[30] Huang S J, Li X N, Lan Y F, et al. Influences of marine cementation on carbonate textures:A case of Feixianguan carbonates of Triassic,NE Sichuan Basin[J]. Journal of Central South University:Science and Technology, 2013, 44(12):5007-5018.
[31] 何莹, 鲍志东, 沈安江, 等. 塔里木盆地牙哈—英买力地区寒武系—下奥陶统白云岩形成机理[J]. 沉积学报, 2006, 24(6) :806-818.
[31] He Y, Bao Z D, Shen A J, et al. The Genetic Mechanism of Dolostones of the Cambrian-Lower Ordovician in Yaha-Yingmaili Region,Tarim Basin:Dolomitization through deep buried hydrothermal fluid[J]. Acta Sedimentologica Sinica, 2006, 24(6):806-818.
[32] 李文正, 张建勇, 郝毅, 等. 川东南地区洗象池组碳氧同位素特征、古海洋环境及其与储集层的关系[J]. 地质学报, 2019, 93(2):487-500.
[32] Li W Z, Zhang J Y, Hao Y, et al. Characteristics of carbon and oxygen isotopic,paleoceanographic environment and their relationship with reservoirs of the Xixiangchi Formation,southeastern Sichuan Basin[J]. Acta Geologica Sinica, 2019, 93(2):487-500.
[33] 贺训云, 寿建峰, 沈安江, 等. 白云岩地球化学特征及成因:以鄂尔多斯盆地靖西马五段中组合为例[J]. 石油勘探与开发, 2014, 41(3) :375-384.
[33] He X Y, Shou J F, Shen A J, et al. Geochemical characteristics and origin of dolomite:A case study from the middle assemblage of Majiagou Formation Member 5 of the west of Jingbian gas field,Ordos Basin,North China[J]. Petroleum Exploration and Development, 2014, 41(3) :375-384.
[34] 韩林. 白云岩成因分类的研究现状及相关发展趋势[J]. 中国西部油气地质, 2006, 2(4):50-56.
[34] Han L. Research status and related development trends of genetic classification of dolomite[J]. West China Petroleum Geosciences, 2006, 2(4):50-56.
[35] 赵俊兴, 陈洪德, 张锦泉, 等. 鄂尔多斯盆地中部马五段白云岩成因机理研究[J]. 石油学报, 2005, 26(5):38-41,47.
doi: 10.7623/syxb200505008
[35] Zhao J X, Chen H D, Zhang J Q, et al. Genesis of dolomite in the fifth member of Majiagou Formation in the middle Ordos Basin[J]. Acta Petrolei Sinica, 2005, 26(5):38-41,47.
[36] 强子同. 碳酸盐岩储层地质学[M]. 东营: 石油大学出版社,1998.
[36] Qiang Z T. Carbonate reservoir geology[M]. Dongying: China University of Petroleum Press,1998.
[37] Allan J R, Wiggins W D. Dolomite reservoirs:Geochemical techniques for evaluating origin and distribution[M]. Tulsa: AAPG,1996:36-129.
[38] 曾理, 万茂霞, 彭英. 白云石有序度及其在石油地质中的应用[J]. 天然气勘探与开发, 2004, 27(4):64-66,72-85.
[38] Zeng L, Wan M X, Peng Y. Dolomite sequentiality and its application to petroleum geology[J]. Natural Cas Exploraiton & Development, 2004, 27(4):64-66,72-85.
[39] 胡俊杰, 李琦, 陈若瑜, 等. 羌塘盆地中、下二叠统碳酸盐岩白云石有序度控制因素研究[J]. 矿物岩石, 2014, 34(2):91-95.
[39] Hu J J, Li Q, Chen R Y, et al. Research on the controlling factors of order degree of dolomite in carbonate rocks of middle and Lower Permian series in Qiangtang Basin[J]. Journal of Mineralogy and Petrology, 2014, 34(2):91-95.
[40] 张杰, Brian Jones, 张建勇. 不同埋藏深度交代白云石晶体结构及其对白云岩储层研究的意义[J]. 中国石油勘探, 2014, 19(3):21-28.
[40] Zhang J, Jones B, Zhang J Y. Crystal structure of replacement dolomite with different buried depths and its significance to study of dolomite reservoir[J]. China Petroleum Exploration, 2014, 19(3):21-28.
[41] 翟刚毅, 王玉芳, 刘国恒, 等. 鄂西地区震旦系—寒武系页岩气成藏模式[J]. 地质力学学报, 2020, 26(5):696-713.
[41] Zhai G Y, Wang Y F, Liu G H, et al. Accumulation model of the Sinian-Cambrian shale gas in western Hubei Province,China[J]. Journal of Geomechanics, 2020, 26(5):696-713.
[1] 田辽东, 龙登红, 杨涛, 刘海, 马敏雄, 姜洪颖. 区域化探数据地质矿产信息提取研究——以甘肃省徽县高桥地区为例[J]. 物探与化探, 2025, 49(4): 768-777.
[2] 柴晨晖, 秦越强, 李朋元, 辛凯, 王建民, 殷嘉乐, 李超群, 原宁波, 郭栋, 孙宇飞. 内蒙古镶黄旗毕山地区土壤地球化学特征及找矿方向[J]. 物探与化探, 2025, 49(4): 778-789.
[3] 张明军, 鄢新华, 熊光强, 罗先明, 朱文晖, 叶岳琛. 化探方法发现江西白果含锂瓷石矿[J]. 物探与化探, 2025, 49(4): 802-809.
[4] 程俊义, 彭松, 范云飞, 卢平, 陈秀旺. 兴义某铀矿土壤氡气特征及其找矿应用[J]. 物探与化探, 2025, 49(4): 810-817.
[5] 王志强, 倪萍, 张宏绪, 石天池, 杨建锋, 张惠玲. 土壤—农作物系统中重金属元素地球化学特征及健康风险评价[J]. 物探与化探, 2025, 49(4): 943-953.
[6] 马强, 苗国文, 朱明霞, 王帅, 贺连珍, 马楠. 干旱咸水湖沉积型富硒土地的划定及开发利用探讨——以青海省洪水泉为例[J]. 物探与化探, 2025, 49(4): 973-979.
[7] 周四春, 刘晓辉, 秦明宽, 刘国安, 郭强, 许强, 胡波, 王广西. 适合于沙漠覆盖区隐伏砂岩铀矿勘查的地气探测技术研究[J]. 物探与化探, 2025, 49(3): 529-537.
[8] 刘国安, 周四春, 刘晓辉, 李盛富, 张明正, 秦明宽, 许强, 王广西, 胡波. 戈壁区效率可调动态地气法探测隐伏砂岩铀矿的试验及效果[J]. 物探与化探, 2025, 49(3): 538-547.
[9] 施玉娇, 张江波, 种松树, 田柯南, 席国庆, 周奇明, 赵立克, 王建超, 杨芳芳. 内蒙古喀喇沁旗金蟾山金矿构造叠加晕异常特征及找矿预测[J]. 物探与化探, 2025, 49(3): 569-577.
[10] 连相宇, 罗见兵. γ能谱法在安徽皖南地区萤石矿勘查中的应用[J]. 物探与化探, 2025, 49(3): 609-613.
[11] 张浩, 牛尧, 张海旭, 沙惠兰. 青海玛沁县东部表层土壤养分地球化学评价[J]. 物探与化探, 2025, 49(3): 697-707.
[12] 叶娇珑, 钟红梅, 徐争强, 马婵华. 大气干湿沉降重金属元素通量及对农田土壤的影响——以四川崇州为例[J]. 物探与化探, 2025, 49(3): 708-717.
[13] 陈青云, 张江波, 种松树, 周奇明, 施玉娇, 刘耀辉, 赵立克, 谭杰. 内蒙古金蟾山矿电吸附法找矿与有利区预测[J]. 物探与化探, 2025, 49(2): 281-287.
[14] 王烜, 杨欢, 王然, 李英, 王海鹏, 柳岩松, 廖俊宇, 张呈彬, 张旭东. 基于Baidu Comate的AI技术在化探不规则网采样点自动编号中的应用[J]. 物探与化探, 2025, 49(2): 462-469.
[15] 苏本玉, 张佳琦, 谭登攀, 于景邨, Li Zhixiong. 岩石物理数据反演成像研究[J]. 物探与化探, 2025, 49(1): 129-137.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com