Please wait a minute...
E-mail Alert Rss
 
物探与化探  2025, Vol. 49 Issue (3): 538-547    DOI: 10.11720/wtyht.2025.1236
  地质调查资源勘查 本期目录 | 过刊浏览 | 高级检索 |
戈壁区效率可调动态地气法探测隐伏砂岩铀矿的试验及效果
刘国安1(), 周四春1(), 刘晓辉1, 李盛富2, 张明正2, 秦明宽3, 许强3, 王广西1, 胡波1
1.成都理工大学 地学核技术四川省重点实验室,四川 成都 610059
2.核工业二一六大队,新疆 乌鲁木齐 830011
3.核工业北京地质研究院,北京 100029
Experiments and effects on prospecting for concealed sandstone-type uranium deposits in a gobi desert region using the dynamic geogas method with adjustable efficiency
LIU Guo-An1(), ZHOU Si-Chun1(), LIU Xiao-Hui1, LI Sheng-Fu2, ZHANG Ming-Zheng2, QIN Ming-Kuan3, XU Qiang3, WANG Guang-Xi1, HU Bo1
1. Applied Nuclear Technology in Geosciences Key Laboratory of Sichuan Province,Chengdu University of Technology, Chengdu 610059, China
2. Geologic Party No. 216, CNNC, Urumqi 830011, China
3. Beijing Research Institute of Uranium Geology, Beijing 100029, China
全文: PDF(4513 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 在戈壁覆盖区已知砂岩型铀矿床及铀矿点各部署1条测线开展地气法探测隐伏砂岩铀矿试验。结果表明,采用效率可调动态地气采样技术,在已知隐伏砂岩铀矿体上方均能捕获到以U元素为主、多种伴(共)生元素同步出现的多个相邻异常峰形成的地气异常区,这个地气异常区的宽度与矿体埋深大约从50 m起至矿体倾覆端的边界位置止的平面投影大体相一致,因此,这种地气异常区与揭示的异常区宽度是隐伏砂岩铀矿的重要地气找矿标志。研究所捕获地气异常与试验区已知矿体赋存深度、品位等因素之间的关系,证实效率可调动态地气法探测隐伏砂岩铀矿的深度至少超过756.4 m,U的地气异常幅度随矿体品位增加而增高,而剖面上砂岩铀矿的地气探测点距不宜超过50 m。试验证明了地气法在戈壁区探测隐伏砂岩铀矿是可行且有效的。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘国安
周四春
刘晓辉
李盛富
张明正
秦明宽
许强
王广西
胡波
关键词 地气法探测隐伏砂岩铀矿试验效率可调动态地气法地气找矿标志    
Abstract

Experiments on prospecting for concealed sandstone-type uranium deposits using the dynamic geogas method were conducted in a gobi desert region by deploying a survey line in each known sandstone-type uranium deposit and uranium ore occurrence. The results indicate that the dynamic geogas sampling technology with adjustable efficiency detected geogas anomaly zones above all known concealed sandstone-type uranium deposits. These zones were characterized by multiple adjacent anomaly peaks composed primarily of uranium (U) and multiple associated (paragenetic) elements, with widths approaching those of the surface projections in a range from the ore bodies with a burial depth of approximately 50 m to the boundaries of the ore bodies' overturning ends. Therefore, the geogas anomaly zones and their widths serve as important ore-prospecting indicators for concealed sandstone-type uranium deposits. The relationships of captured geogas anomalies with factors such as the depths and grades of ore bodies in the experimental area confirm that the dynamic geogas method with adjustable efficiency can detect concealed sandstone-type uranium deposits at depths exceeding 756.4 m. The relationships also reveal that the amplitude of U geogas anomalies increases with the ore body grade and that the spacing between geogas detection points on the profile for sandstone-type uranium deposits should not exceed 50 m. The experiment corroborates that the geogas method is feasible and effective in detecting concealed sandstone-type uranium deposits in a gobi desert region.

Key wordsexperiment on prospecting for concealed sandstone-type uranium deposits using the geogas method    dynamic geogas technology with adjustable efficiency    ore-prospecting indicator for geogas
收稿日期: 2024-05-23      修回日期: 2024-07-17      出版日期: 2025-06-20
ZTFLH:  P632  
基金资助:国防科工局核能开发项目(地HTLM2101)
通讯作者: 周四春(1954-),男,成都理工大学教授,主要从事深部找矿技术方法研究及核技术应用工作。Email:121905290@qq.com
作者简介: 刘国安(1987-),男,博士研究生,核科学与技术专业,高级工程师,主要从事深部找矿技术方法与辐射环境研究工作。Email:372092559@qq.com
引用本文:   
刘国安, 周四春, 刘晓辉, 李盛富, 张明正, 秦明宽, 许强, 王广西, 胡波. 戈壁区效率可调动态地气法探测隐伏砂岩铀矿的试验及效果[J]. 物探与化探, 2025, 49(3): 538-547.
LIU Guo-An, ZHOU Si-Chun, LIU Xiao-Hui, LI Sheng-Fu, ZHANG Ming-Zheng, QIN Ming-Kuan, XU Qiang, WANG Guang-Xi, HU Bo. Experiments and effects on prospecting for concealed sandstone-type uranium deposits in a gobi desert region using the dynamic geogas method with adjustable efficiency. Geophysical and Geochemical Exploration, 2025, 49(3): 538-547.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2025.1236      或      https://www.wutanyuhuatan.com/CN/Y2025/V49/I3/538
Fig.1  研究区位置(a)及地质特征示意(b)
1—第四系;2—安居安组;3—克孜洛依组;4—巴什布拉克组;5—乌拉根组;6—卡拉塔尔组;7—齐姆根组;8—阿尔塔什组;9—英吉沙群;10—克孜勒苏群第一岩性段;11—克孜勒苏群第二岩性段;12—克孜勒苏群第三岩性段;13—克孜勒苏群第四岩性段;14—克孜勒苏群第五岩性段;15—长城系阿克苏群;16—氧化带Ⅰ;17—氧化带Ⅱ;18—氧化带Ⅲ;19—地层界线;20—工业矿孔、矿化孔、无矿孔;21—铀矿床/点;22—地气试验测线
Fig.2  效率可调的双捕集器串联式动态地气采样装置结构
测点/测线 7/A 8/A 13/A 3/B 15/B 平均值
基本测量值/
(μg·L-1)
0.036 0.067 0.043 0.049 0.041
检查测量/
(μg·L-1)
0.042 0.050 0.057 0.050 0.045
对比误差/% 7.7 14.5 14.0 1.0. 4.7 8.4
Table 1  可行性试验中U的基本测量与检查测量对比
异常区位置 背景
标准
异常
下限
异常区
U均值
U异常
峰均值
U异常峰
极大值
A测线325~1400 m 0.050 0.017 0.067 0.080 0.168 0.246
B测线500~1320 m 0.053 0.078 0.086
Table 2  A测线、B测线地气测量U元素参数统计
元素 U Th K Zn Pb Cu Mo Mn
异常下限/(μg·L-1) 0.067 0.04 390 155 4.10 8.60 0.25 11.0
元素 Ti Cr Co Nb Li Rb La Sc
异常下限/(μg·L-1) 5.85 2.10 0.16 0.016 2.05 0.75 0.15 0.29
元素 Sb W V Y Zr Nd Sr Fe
异常下限/(μg·L-1) 3.04 0.04 0.62 0.08 3.51 0.18 3.85 1250
Table 3  用于编制地气测量成果图的元素异常下限值统计
Fig.3  A测线地气试验U、Th、K、Zn、Pb、Cu、Mo、Mn元素剖面
1—第四系;2—下白垩统克孜勒苏群第五岩性段;3—下白垩统克孜勒苏群第四岩性段;4—下白垩统克孜勒苏群第三岩性段;5 —下白垩统克孜勒苏群第二岩性段;6—下白垩统克孜勒苏群第一岩性段;7—中元古界阿克苏群;8—整合界线、角度不整合界线;9—氧化带;10—工业矿体、矿化体、异常体;11—钻孔编号、深度;12—地气测量曲线
Fig.4  B测线地气试验U、Th、K、Zn、Pb、Cu、Mo、Mn元素剖面
1—第四系;2—下白垩统克孜勒苏群第五岩性段;3—下白垩统克孜勒苏群第四岩性段;4—下白垩统克孜勒苏群第三岩性段;5 —下白垩统克孜勒苏群第二岩性段;6—下白垩统克孜勒苏群第一岩性段;7—中元古界阿克苏群;8—整合界线、角度不整合界线;9—氧化带;10—工业矿体、矿化体、异常体;11—钻孔编号、深度;12—地气U异常下限;13—地气U异常编号;14—地气测量曲线
Fig.5  A测线地气试验Ti、Cr、Co、Nb、Li、Rb、La、Sc元素剖面
1—第四系; 2—下白垩统克孜勒苏群第五岩性段; 3—下白垩统克孜勒苏群第四岩性段; 4—下白垩统克孜勒苏群第三岩性段; 5—下白垩统克孜勒苏群第二岩性段; 6—下白垩统克孜勒苏群第一岩性段; 7—中元古界阿克苏群; 8—整合界线、角度不整合界线; 9—氧化带; 10—工业矿体、矿化体、异常体; 11—钻孔编号、深度; 12—地气测量曲线
Fig.6  A测线地气试验Sb、W、V、Y、Zr、Nd、Sr、Fe元素剖面
1—第四系; 2—下白垩统克孜勒苏群第五岩性段; 3—下白垩统克孜勒苏群第四岩性段; 4—下白垩统克孜勒苏群第三岩性段; 5—下白垩统克孜勒苏群第二岩性段; 6—下白垩统克孜勒苏群第一岩性段; 7—中元古界阿克苏群; 8—整合界线、角度不整合界线; 9—氧化带; 10—工业矿体、矿化体、异常体; 11—钻孔编号、深度; 12—地气测量曲线
[1] 聂逢君, 杨舒琪, 封志兵, 等. 隆起对砂岩型铀矿成矿的控制及找矿启示[J]. 地球学报, 2024, 45(3):265-277.
[1] Nie F J, Yang S Q, Feng Z B, et al. Control of uplift on sandstone-type uranium mineralization and its prospecting enlightenment[J]. Acta Geoscientica Sinica, 2024, 45(3):265-277.
[2] 封志兵, 聂冰锋, 聂逢君, 等. 地球物理方法在砂岩型铀矿勘查中的应用进展[J]. 物探与化探, 2021, 45(5):1179-1188.
[2] Feng Z B, Nie B F, Nie F J, et al. Application progress of geophysical methods in exploration of sandstone-type uranium deposit[J]. Geophysical and Geochemical Exploration, 2021, 45(5):1179-1188.
[3] 周四春, 刘晓辉, 童纯菡, 等. 地气测量技术及在隐伏矿找矿中的应用研究[J]. 地质学报, 2014, 88(4):736-754.
[3] Zhou S C, Liu X H, Tong C H, et al. Application research of geogas survey in prospecting concealed ore[J]. Acta Geologica Sinica, 2014, 88(4):736-754.
[4] Tong C H, Li J C, Ge L Q, et al. Experimental observation of the nano-scale particles in geogas matters and its geological significance[J]. Science in China Series D:Earth Sciences, 1998, 41(3):325-329.
[5] 李盛富, 陈洪德, 蔡根庆, 等. 巴什布拉克铀矿床物质成分[J]. 矿物学报, 2015, 35(3):365-372.
[5] Li S F, Chen H D, Cai G Q, et al. Material composition in bashibulake uranium deposit[J]. Acta Mineralogica Sinica, 2015, 35(3):365-372.
[6] 李炳谦, 张明正, 王守玉, 等. 塔里木盆地喀什凹陷巴什布拉克矿床特征与铀成矿[J]. 铀矿地质, 2023, 39(4):606-617.
[6] Li B Q, Zhang M Z, Wang S Y, et al. Characteristics of Bashibulake deposit and uranium metallization in Kashi Sag,Tarim Basin[J]. Uranium Geology, 2023, 39(4):606-617.
[7] 李盛富, 王果. 喀什凹陷中生代以来的构造事件对中——下侏罗统铀矿化的影响[J]. 世界核地质科学, 2008, 25(1):7-12.
[7] Li S F, Wang G. Influences of tectonic events since Mesozoic on uranium mineralization in Middle-Lower Jurassic of Kashgar Sag[J]. World Nuclear Geoscience, 2008, 25(1):7-12.
[8] 韩凤彬, 陈正乐, 陈柏林, 等. 新疆喀什凹陷巴什布拉克铀矿流体包裹体及有机地球化学特征[J]. 中国地质, 2012, 39(4):985-998.
[8] Han F B, Chen Z L, Chen B L, et al. Fluid inclusion and organic geochemistry characteristics of the Bashibulake uranium deposit in Kashi Sag,Xinjiang[J]. Geology in China, 2012, 39(4):985-998.
[9] 刘念, 秦明宽, 郭强, 等. 塔里木盆地中下侏罗统砂岩型铀矿成矿条件分析[J]. 铀矿地质, 2022, 38(5):843-855.
[9] Liu N, Qin M K, Guo Q, et al. Metallogenic conditions of sandstone type uranium deposits in the middle and lower Jurassic of Tarim Basin[J]. Uranium Geology, 2022, 38(5):843-855.
[10] 刘正义, 许强, 刘红旭, 等. 巴什布拉克含铀地沥青铀矿床矿化特征和成矿机理[J]. 西北地质, 2021, 54(1):109-124.
[10] Liu Z Y, Xu Q, Liu H X, et al. Mineralization characteristics and metallogenic mechanism of bashibulake uranium-bearing asphalt uranium deposit[J]. Northwestern Geology, 2021, 54(1):109-124.
[11] 李炳谦, 王强强, 张明正, 等. 喀什凹陷下白垩统克孜勒苏群铀矿化成因浅析[J]. 新疆地质, 2022, 40(2):246-249.
[11] Li B Q, Wang Q Q, Zhang M Z, et al. Cause analysis of uranium mineralization in lower Cretaceous Kizilsu Group in Kashi depression[J]. Xinjiang Geology, 2022, 40(2):246-249.
[12] Xie Y, Peng X H, Wang Y Q. Application research for geogas prospecting in the Xinqu gold deposit,Gansu,China[J]. Acta Geologica Sinica-English Edition, 2014, 88(S2):1307-1308.
[13] 童纯菡, 李巨初. 地气测量寻找深部隐伏金矿及其机理研究[J]. 地球物理学报, 1999, 42(1):135-142.
[13] Tong C H, Li J C. Geogas prospection and its mechanism in the search for deep-seated or concealed gold deposits[J]. Chinese Journal of Geophysics, 1999, 42(1):135-142.
[14] 刘晓辉, 周四春, 童纯菡, 等. 提高地气探测灵敏度的方法[J]. 物探与化探, 2012, 36(6):1064-1067.
[14] Liu X H, Zhou S C, Tong C H, et al. The method and technique for improving the detection sensitivity of dynamic geogas survey[J]. Geophysical and Geochemical Exploration, 2012, 36(6):1064-1067.
[15] 刘英俊, 曹励明. 元素地球化学导论[M]. 北京: 地质出版社,1987.
[15] Liu Y J, Cao L M. Introduction to elemental geochemistry[M]. Beijing: Geological Publishing House,1987.
[16] 费业泰. 误差理论与数据处理(6版)[M]. 北京: 机械工业出版社, 2010.
[16] Fei Y T. Error theory and data processing(6th,Edition)[M]. Beijing: China Machine Press, 2010.
[17] 周四春, 王登红, 刘晓辉, 等. 关键矿产深部找矿的技术方法与示范[M]. 北京: 地质出版社. 2023.
[17] Zhou S C, Wang D H, Liu X H, et al. Technical methods and demonstrations of deep prospecting of critical minerals[M]. Beijing: Geological Publishing House, 2023.
[1] 周四春, 刘晓辉, 秦明宽, 刘国安, 郭强, 许强, 胡波, 王广西. 适合于沙漠覆盖区隐伏砂岩铀矿勘查的地气探测技术研究[J]. 物探与化探, 2025, 49(3): 529-537.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com