Please wait a minute...
E-mail Alert Rss
 
物探与化探  2025, Vol. 49 Issue (3): 708-717    DOI: 10.11720/wtyht.2025.1118
  生态地质调查 本期目录 | 过刊浏览 | 高级检索 |
大气干湿沉降重金属元素通量及对农田土壤的影响——以四川崇州为例
叶娇珑(), 钟红梅, 徐争强, 马婵华
四川省核地质调查研究所,四川 成都 610061
Flux of heavy metals in atmospheric dry and wet precipitation and their effects on farmland soil: A case study of Chongzhou,Sichuan
YE Jiao-Long(), ZHONG Hong-Mei, XU Zheng-Qiang, MA Chan-Hua
Sichuan Institute of Nuclear Geology Survey, Chengdu 610061, China
全文: PDF(3726 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

大气沉降是土壤重金属累积的重要来源。为查明四川崇州地区大气干湿沉降对农田土壤的影响,定量监测研究区干湿沉降并测试重金属含量,据此估算干湿沉降通量及重金属变化率,进行潜在生态风险评价,探讨研究区干湿沉降八项重金属元素输入在农田土壤重金属累积中的作用。研究结果表明:本区干湿沉降物重金属含量Cd、Pb、Zn超周边土壤含量,Cd、Zn超农用地土壤污染筛选值的2.25倍、1.09倍;大气干湿沉降重金属元素年通量均小于全国平均值,沉降通量Zn>Cr>Pb>Cu>Ni>As>Cd>Hg。与前人研究结果对比表明,研究区各项重金属沉降年通量均有所下降,其中Cd下降幅度最大。对于大气重金属沉降通量空间分布,除Cr元素外,其他重金属元素相对高值区基本出现在距市区、工业园区、交通干线较近,受人类活动影响较大的区域。地累积指数显示,各重金属污染程度Cd为重度—严重污染,其次为Hg、Pb,As、Ni无污染。大气干湿沉降物对土壤影响最显著的重金属为Cd和Zn,1 年后的增量分别为0.421 mg/kg、104.653 mg/kg,年变化率达到了0.138%和0.146%,表明大气沉降物为本区农田土壤中重金属Cd、Zn的重要来源之一;低沉降通量的Cd含量超标最多,引起土壤环境变化最显著,需引起注意。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
叶娇珑
钟红梅
徐争强
马婵华
关键词 大气干湿沉降重金属元素沉降通量污染评价土壤累积    
Abstract

It shows that atmospheric deposition is one of the main sources of soil heavy metal pollution. In order to find out the effects of atmospheric wet and dry deposition on farmland soil, the accumulation of heavy metals in farmland soil was analysed by monitoring the dry and wet deposition in the study area and testing the heavy metal content, estimating the dry and wet deposition flux, heavy metal change rate and potential ecological risk assessment. The results showed that the heavy metal content of dry and wet sediment exceeded the content of Cd, Pb and Zn in the surrounding soil, and Cd and Zn exceeded the soil pollution screening value of agricultural land by 2.25 times and 1.09 times;The annual flux of heavy metal elements in the dry and wet precipitation of the atmosphere is smaller than the national average, and the sedimentation flux order is Zn>Cr>Pb>Cu>Ni>As>Cd>Hg, the annual sedimentation flux of Zn is the highest, and the sedimentation flux of Cd is low. The geo-accumulation index showed that in the atmospheric dust, Cd reached extremely high pollution level, followed by Hg, Pb, there was no As and Ni pollution. The heavy metals with the most significant impact of atmospheric dry and wet sediment on soil were Cd and Zn, with an increase of 0.421 mg/kg and 104.653 mg/kg after one year, and the annual change rates reached 0.138% and 0.146%, which indicated that the atmospheric deposition was one of the most important sources of the heavy metal Cd and Zn in the farmland soil. The sedimentation flux of Cd is low, but its content exceeded the standard the most, and caused the most significant changes in the soil environment, which needs to be paid attention to.

Key wordsatmospheric dry and wet deposition    heavy metals    deposition flux    pollution evaluation    soil accumulation
收稿日期: 2024-03-26      修回日期: 2024-05-27      出版日期: 2025-06-20
ZTFLH:  X82  
  P632  
基金资助:四川省科技厅科技创新基地(平台和人才)项目(2021JDGD0014);四川省地质调查研究院财政科研项目(51000023Y000008287156)
作者简介: 叶娇珑(1989- ),女,硕士,2013年毕业于成都理工大学,研究方向:生态环境调查与监测、环境工程。Email: yjl051766@163.com
引用本文:   
叶娇珑, 钟红梅, 徐争强, 马婵华. 大气干湿沉降重金属元素通量及对农田土壤的影响——以四川崇州为例[J]. 物探与化探, 2025, 49(3): 708-717.
YE Jiao-Long, ZHONG Hong-Mei, XU Zheng-Qiang, MA Chan-Hua. Flux of heavy metals in atmospheric dry and wet precipitation and their effects on farmland soil: A case study of Chongzhou,Sichuan. Geophysical and Geochemical Exploration, 2025, 49(3): 708-717.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2025.1118      或      https://www.wutanyuhuatan.com/CN/Y2025/V49/I3/708
Fig.1  研究区大气干湿沉降监测样点分布
As Hg Cd Cr Cu Ni Pb Zn
湿物质 最大值 0.00059 - 0.00027 0.07544 0.00672 0.00156 0.01920 0.32167
最小值 - - 0.00008 0.00276 0.00089 0.00033 0.00073 0.01148
平均值 0.00046 - 0.00012 0.01288 0.00308 0.00063 0.00376 0.05807
干物质 最大值 6.65358 0.16257 1.99882 62.99439 50.64183 20.86872 163.72294 420.90655
最小值 1.21612 0.04969 0.55682 15.32678 12.19508 5.02972 20.35649 102.76901
平均值 2.46887 0.10948 1.35057 41.21737 32.86500 13.38574 66.39179 271.63615
研究区土壤平均值 11.72 0.17 0.42 93.54 38.46 33.97 41.86 104.50
四川省土壤背景值 10.4 0.061 0.079 79 31.1 32.6 30.9 86.5
风险筛选值 35 0.6 0.6 200 200 100 120 250
Table 1  研究区大气干湿沉降重金属含量
As Hg Cd Cr Cu Ni Pb Zn
2020年12月~
2021年11月
最小值 0.136 0.006 0.05 1.261 1.095 0.358 1.5 8.202
最大值 0.336 0.027 0.181 26.826 5.906 1.733 15.227 97.089
均值 0.242 0.017 0.122 6.218 3.035 1.080 5.474 31.785
标准差 0.060 0.006 0.039 6.831 1.329 0.372 3.497 21.245
2004年8月~2005年8月成都经济区[5] 最小值 0.38 0.01 0.64 - - - 11.00 35.84
最大值 11.74 0.50 10.28 - - - 320.15 1423.87
均值 2.77 0.10 1.77 - - - 45.95 147.83
标准差 2.45 0.09 1.74 - - - 56.16 286.01
全国平均值 2.45 0.036 0.48 15.08 13.09 5.9 22.99 70.11
Table 2  研究区大气干湿沉降重金属元素年沉降通量
Fig.2  大气沉降重金属元素通量变化对比
Fig.3  大气沉降中元素沉淀与溶解部分通量对比
Fig.4  大气重金属干湿沉降年通量地球化学分布
元素 最小值 最大值 平均值
As -2.51 -0.06 -1.64
Hg 0.29 2.00 1.36
Cd 3.4 5.25 4.57
Cr -1.78 0.26 -0.5
Cu -0.77 1.29 0.52
Ni -2.11 -0.06 -0.84
Pb -0.02 2.99 1.46
Zn 0.83 2.87 2.11
Table 3  研究区大气干湿沉降重金属地累积指数
Fig.5  地累积指数特征
采样点 As Hg Cd Cr Cu Ni Pb Zn
A001 11.718 0.170 0.421 93.601 38.465 33.966 41.875 104.637
A002 11.716 0.170 0.421 93.661 38.478 33.965 41.934 104.693
A003 11.716 0.170 0.421 93.520 38.463 33.961 41.873 104.672
A004 11.719 0.170 0.421 93.540 38.467 33.968 41.880 104.649
A005 11.718 0.170 0.421 93.540 38.477 33.969 41.902 105.063
A006 11.718 0.170 0.421 93.537 38.468 33.968 41.878 104.639
A007 11.716 0.170 0.421 93.549 38.472 33.963 41.896 104.716
A008 11.718 0.170 0.420 93.535 38.465 33.968 41.871 104.590
A009 11.712 0.170 0.420 93.487 38.447 33.949 41.850 104.565
A010 11.715 0.170 0.421 93.511 38.452 33.957 41.864 104.662
A011 11.716 0.170 0.421 93.523 38.459 33.961 41.869 104.613
A012 11.721 0.170 0.420 93.543 38.465 33.970 41.867 104.545
最小值 11.712 0.170 0.420 93.487 38.447 33.949 41.850 104.545
最大值 11.721 0.170 0.421 93.661 38.478 33.970 41.934 105.063
平均值 11.717 0.170 0.421 93.541 38.463 33.963 41.877 104.653
Table 4  研究区大气干湿沉降1年后引起土壤中重金属元素含量的变化
累积时间/a As Hg Cd Cr Cu Ni Pb Zn
1 -0.027 0.022 0.138 0.001 0.009 -0.020 0.040 0.146
3 -0.082 0.066 0.414 0.003 0.026 -0.061 0.121 0.439
5 -0.136 0.110 0.689 0.004 0.043 -0.102 0.201 0.731
10 -0.271 0.220 1.375 0.009 0.085 -0.203 0.401 1.460
20 -0.539 0.439 2.740 0.018 0.170 -0.403 0.800 6.913
50 -1.328 1.087 6.769 0.049 0.422 -0.992 1.979 7.188
100 -2.592 2.138 13.280 0.105 0.839 -1.934 3.890 14.110
Table 5  各观测点大气干湿沉降引起土壤重金属元素的年变化率
[33] Zhang G Z. Influence of atmospheric deposition on heavy metal pollution in farmland soil in Bohai Rim region and its control countermeasures[D]. Lanzhou: Gansu Agricultural University, 2019.
[34] 龚香宜, 祁士华, 吕春玲, 等. 福建省兴化湾大气重金属的干湿沉降[J]. 环境科学研究, 2006, 19(6):31-34.
[34] Gong X Y, Qi S H, Lv C L, et al. Atmospheric deposition of heavy metals to Xinghua Bay,Fujian Province[J]. Research of Environmental Sciences, 2006, 19(6):31-34.
[35] Rühling Å. A European survey of atmospheric heavy metal deposition in 2000-2001[J]. Environmental Pollution, 2002, 120(1):23-25.
pmid: 12199464
[36] Tasdemir Y, Kural C. Atmospheric dry deposition fluxes of trace elements measured in Bursa,Turkey[J]. Environmental Pollution, 2005, 138(3):462-472.
pmid: 15955602
[37] De P Pereira P A, Lopes W A, Carvalho L S, et al. Atmospheric concentrations and dry deposition fluxes of particulate trace metals in Salvador,Bahia,Brazil[J]. Atmospheric Environment, 2007, 41(36):7837-7850.
[38] 中华人民共和国国土资源部.土地质量地球化学评价规范:DZ/T 0295—2016[S]. 北京: 中国标准出版社, 2016.
[38] Ministry of Land and Resources of the People’s Republic of China.Determination of land quality geochemical evaluation:DZ/T 0295—2016[S]. Beijing: Standards Press of China, 2016.
[39] Dai L J, Wang L Q, Li L F, et al. Multivariate geostatistical analysis and source identification of heavy metals in the sediment of Poyang Lake in China[J]. Science of The Total Environment, 2018,621:1433-1444.
[40] Wu W, Wu P, Yang F, et al. Assessment of heavy metal pollution and human health risks in urban soils around an electronics manufacturing facility[J]. Science of The Total Environment, 2018,630:53-61.
[41] Cai K, Li C, Na S. Spatial distribution,pollution source,and health risk assessment of heavy metals in atmospheric depositions:A case study from the sustainable city of Shijiazhuang,China[J]. Atmosphere, 2019, 10(4):222.
[42] 国家环境保护局, 中国环境监测总站. 中国土壤元素背景值[S]. 北京: 中国环境科学出版社,1990:334-379.
[42] Environmental Protection Administration, China Environmental Monitoring Station. Background values of soil elements in China[S]. Beijing: Environmental Science Press of China,1990:334-379.
[43] 生态环境部, 国家市场监督管理总局. 土壤环境质量农用地土壤污染风险管控标准:GB 15618—2018[S].北京: 中国标准出版社, 2018.
[43] Ministry of Ecology and Environment,State Administration for Market Supervision and Administration. Soil environmental quality Risk control standard for soil contamination of agricultural land:GB 15618—2018[S].Beijing: Standards Press of China, 2018.
[1] Kapusta P, Stanek M, Szarek-Łukaszewska G, et al. Long-term moss monitoring of atmospheric deposition near a large steelworks reveals the growing importance of local non-industrial sources of pollution[J]. Chemosphere, 2019,230:29-39.
[2] Deng Y, Jiang L H, Xu L F, et al. Spatial distribution and risk assessment of heavy metals in contaminated paddy fields:A case study in Xiangtan City,Southern China[J]. Ecotoxicology and Environmental Safety, 2019,171:281-289.
[3] 王增辉. 鲁西南平原区大气干湿沉降元素输入通量及来源浅析:以巨野县为例[J]. 物探与化探, 2020, 44(4):839-846.
[3] Wang Z H. An analysis of the input flux and source of elements in dry and wet atmospheric deposition of southwest plain of Shandong:A case study of Juye County[J]. Geophysical and Geochemical Exploration, 2020, 44(4):839-846.
[4] 张夏, 刘斌, 肖柏林, 等. 重庆主城大气降尘中重金属污染特征及评价[J]. 环境科学, 2020, 41(12):5288-5294.
[4] Zhang X, Liu B, Xiao B L, et al. Pollution characteristics and assessment of heavy metals in atmospheric deposition in core urban areas,Chongqing[J]. Environmental Science, 2020, 41(12):5288-5294.
[5] 汤奇峰, 杨忠芳, 张本仁, 等. 成都经济区As等元素大气干湿沉降通量及来源研究[J]. 地学前缘, 2007, 14(3):213-222.
[5] Tang Q F, Yang Z F, Zhang B R, et al. A study of elements flux and sources from atmospheric bulk deposition in the Chengdu Economic Region[J]. Earth Science Frontiers, 2007, 14(3):213-222.
[6] 陈雅丽, 翁莉萍, 马杰, 等. 近十年中国土壤重金属污染源解析研究进展[J]. 农业环境科学学报, 2019, 38(10):2219-2238.
[6] Chen Y L, Weng L P, Ma J, et al. Review on the last ten years of research on source identification of heavy metal pollution in soils[J]. Journal of Agro-Environment Science, 2019, 38(10):2219-2238.
[7] 王梦梦, 原梦云, 苏德纯. 我国大气重金属干湿沉降特征及时空变化规律[J]. 中国环境科学, 2017, 37(11):4085-4096.
[7] Wang M M, Yuan M Y, Su D C. Characteristics and spatial-temporal variation of heavy metals in atmospheric dry and wet deposition of China[J]. China Environmental Science, 2017, 37(11):4085-4096.
[8] 黄春雷, 宋金秋, 潘卫丰. 浙东沿海某地区大气干湿沉降对土壤重金属元素含量的影响[J]. 地质通报, 2011, 30(9):1434-1441.
[8] Huang C L, Song J Q, Pan W F. Impact of dry and wet atmospheric deposition on content of heavy metals in soils along coastal areas of eastern Zhejiang Province[J]. Geological Bulletin of China, 2011, 30(9):1434-1441.
[9] 栾慧君, 塞古, 徐蕾, 等. 徐州北郊大气降尘重金属污染特征与风险评价[J]. 中国环境科学, 2020, 40(11):4679-4687.
[9] Luan H J, Sai G, Xu L, et al. Characteristics and risk assessment of heavy metals from atmospheric deposition in northern suburban of Xuzhou[J]. China Environmental Science, 2020, 40(11):4679-4687.
[10] 孙锐, 周晓芳, 陈阳, 等. 正定矩阵因子模型解析鄂尔多斯高原煤矿土壤重金属来源[J]. 科学技术与工程, 2021, 21(16):6937-6943.
[10] Sun R, Zhou X F, Chen Y, et al. Positive definite matrix factor model analysis of the source of heavy metals in coal mine soils in the Ordos Plateau[J]. Science Technology and Engineering, 2021, 21(16):6937-6943.
[11] 叶娇珑, 袁宏, 马婵华, 等. 成都平原某农田区大气降尘重金属含量特征及生态风险评价[J]. 四川环境, 2023, 42(3):65-71.
[11] Ye J L, Yuan H, Ma C H, et al. Characteristics and ecological risk assessment of heavy metals in atmospheric dust in a farmland area in Chengdu Plain[J]. Sichuan Environment, 2023, 42(3):65-71.
[12] 环境保护部, 国土资源部. 全国土壤污染状况调查公报[R]. [2014-04-17]. https://www.gov.cn/foot/2014-04/17/content_2661768.htm.
[12] Ministry of Environmental Protection,Ministry of Land and Resources. Report on the national general survey of soil contamination[R]. [2014-04-17]. https://www.gov.cn/foot/2014-04/17/content_2661768.htm.
[13] 生态环境部. 2021 年中国生态环境状况公报[R]. [2022-05-26]. https://www.gov.cn/xinwen/2022-05/28/content_5692799.htm.
[13] Ministry of Ecology and Environment of the People’s Republic of China. Report on the China’s ecological and environmental conditions[R]. [2022-05-26]. https://www.gov.cn/xinwen/2022-05/28/content_5692799.htm.
[14] 米雅竹, 梁家妮, 周俊, 等. 典型冶炼厂大气沉降区农田耕层土壤重金属(Cd、Cu、Pb)输入输出平衡研究[J]. 土壤学报, 2024, 61(5):1339-1348.
[14] Mi Y Z, Liang J N, Zhou J, et al. Input and output balance of heavy metals (Cd,Cu,Pb) in arable soils in atmospheric deposition area of typical smelter[J]. China Industrial Economics, 2024, 61(5):1339-1348.
[15] 张国忠, 黄威, 潘月鹏, 等. 河北典型农田大气重金属干沉降通量及来源解析[J]. 中国生态农业学报, 2019, 27(8):1245-1254.
[15] Zhang G Z, Huang W, Pan Y P, et al. Dry deposition flux of atmospheric heavy metals and its source apportionment in a typical farmland of Hebei Province[J]. Chinese Journal of Eco-Agriculture, 2019, 27(8):1245-1254.
[16] 蔡柯柯, 赵志强, 蒙丽, 等. 重庆市秀山县北部大气干湿沉降重金属元素分布特征及来源分析[J]. 物探与化探, 2024, 48(1):237-244.
[16] Cai K K, Zhao Z Q, Meng L, et al. Distribution characteristics and source analysis of heavy metals from dry and wet atmospheric deposition in northern XiushanCounty,Chongqing[J]. Geophysical and Geochemical Exploration, 2024, 48(1):237-244.
[17] Pacyna J M, Pacyna E G, Aas W. Changes of emissions and atmospheric deposition of mercury,lead,and cadmium[J]. Atmospheric Environment, 2009, 43(1):117-127.
[18] Conko K M, Rice K C, Kennedy M M. Atmospheric wet deposition of trace elements to a suburban environment,Reston,Virginia,USA[J]. Atmospheric Environment, 2004, 38(24):4025-4033.
[19] Sakata M, Tani Y, Takagi T. Wet and dry deposition fluxes of trace elements in Tokyo Bay[J]. Atmospheric Environment, 2008, 42(23):5913-5922.
[20] Castillo S, de la Rosa J D, Sánchez de la Campa A M, et al. Heavy metal deposition fluxes affecting an Atlantic coastal area in the southwest of Spain[J]. Atmospheric Environment, 2013,77:509-517.
[21] Aas W, Shao M, Jin L, et al. Air concentrations and wet deposition of major inorganic ions at five non-urban sites in China,2001-2003[J]. Atmospheric Environment, 2007, 41(8):1706-1716.
[22] Rossini P, Matteucci G, Guerzoni S. Atmospheric fall-out of metals around the murano glass-making district (Venice,Italy)[J]. Environmental Science and Pollution Research, 2010, 17(1):40-48.
[23] Weerasundara L, Amarasekara R W K, Magana-Arachchi D N, et al. Microorganisms and heavy metals associated with atmospheric deposition in a congested urban environment of a developing country:Sri Lanka[J]. Science of the Total Environment, 2017,584:803-812.
[24] Davis B S, Birch G F. Spatial distribution of bulk atmospheric deposition of heavy metals in metropolitan Sydney,Australia[J]. Water,Air,& Soil Pollution, 2011, 214(1):147-162.
[25] Sabin L D, Schiff K C. Dry atmospheric deposition rates of metals along a coastal transect in southern California[J]. Atmospheric Environment, 2008, 42(27):6606-6613.
[26] 杨忠平, 卢文喜, 龙玉桥. 长春市城区重金属大气干湿沉降特征[J]. 环境科学研究, 2009, 22(1):28-34.
[26] Yang Z P, Lu W X, Long Y Q. Atmospheric dry and wet deposition of heavy metals in Changchun City,China[J]. Research of Environmental Sciences, 2009, 22(1):28-34.
[27] 王艳, 刘晓环, 金玲仁, 等. 泰山地区湿沉降中重金属的空间分布[J]. 环境科学, 2007, 28(11):2562-2568.
[27] Wang Y, Liu X H, Jin L R, et al. Spatial variations of heavy metals in precipitation at mount Taishan Region[J]. Environmental Science, 2007, 28(11):2562-2568.
[28] 潘月鹏, 王跃思, 杨勇杰, 等. 区域大气颗粒物干沉降采集及金属元素分析方法[J]. 环境科学, 2010, 31(3):553-559.
[28] Pan Y P, Wang Y S, Yang Y J, et al. Determination of trace metals in atmospheric dry deposition with a heavy matrix of PUF by inductively coupled plasma mass spectroscopy after microwave digestion[J]. Environmental Science, 2010, 31(3):553-559.
[29] Pan Y P, Wang Y S. Atmospheric wet and dry deposition of trace elements at 10 sites in Northern China[J]. Atmospheric Chemistry and Physics, 2015, 15(2):951-972.
[30] 张小敏, 张秀英, 钟太洋, 等. 中国农田土壤重金属富集状况及其空间分布研究[J]. 环境科学, 2014, 35(2):692-703.
[30] Zhang X M, Zhang X Y, Zhong T Y, et al. Spatial distribution and accumulation of heavy metal in arable land soil of China[J]. Environmental Science, 2014, 35(2):692-703.
[31] 杨昱祺, 王小策, 孙淑蕊, 等. 不同农业用地类型对土壤性质和土壤环境的影响——以北京市延庆县为例[J]. 水土保持通报, 2014, 34(5):313-316,321.
[31] Yang Y Q, Wang X C, Sun S R, et al. Effects of different agricultural land use types on soil properties and soil environment:A case study in Yanqing County of Beijing City[J]. Bulletin of Soil and Water Conservation, 2014, 34(5):313-316,321.
[32] Meng W Q, Wang Z W, Hu B B, et al. Heavy metals in soil and plants after long-term sewage irrigation at Tianjin China:A case study assessment[J]. Agricultural Water Management, 2016,171:153-161.
[33] 张国忠. 环渤海区域大气沉降对农田土壤重金属污染的影响及其防治对策研究[D]. 兰州: 甘肃农业大学, 2019.
[1] 鲁江, 朱丽芬, 骆检兰, 刘显丽. 湘江流域土壤重金属元素地球化学背景值与基准值研究[J]. 物探与化探, 2025, 49(3): 687-696.
[2] 姜冰, 张德明, 刘阳. 大气降尘对土壤主要环境元素的累积影响及评价——以山东省高密市为例[J]. 物探与化探, 2024, 48(1): 228-236.
[3] 蔡柯柯, 赵志强, 蒙丽, 王孝萌, 刘键, 罗仁凤. 重庆市秀山县北部大气干湿沉降重金属元素分布特征及来源分析[J]. 物探与化探, 2024, 48(1): 237-244.
[4] 徐磊, 李俊, 瞿镪, 文方平, 赵萌生, 程琰勋, 徐杰, 王浩宇. 滇中中高山丘陵区大气干湿沉降元素地球化学特征及来源解析[J]. 物探与化探, 2023, 47(6): 1602-1610.
[5] 赵玉岩, 姜涛, 杨秉翰, 张泽宇, 李政赫, 李兵, 汤肖丹. 农田土壤—植物系统中钒的迁移富集规律[J]. 物探与化探, 2023, 47(3): 835-844.
[6] 宋运红, 杨凤超, 刘凯, 戴慧敏, 许江, 杨泽. 三江平原耕地土壤重金属元素分布特征及影响因素的多元统计分析[J]. 物探与化探, 2022, 46(5): 1064-1075.
[7] 张沁瑞, 李欢, 邓宇飞, 黄勇, 张博, 许一波. 北京东南郊土壤重金属元素分布及其在表层土壤中的富集特征[J]. 物探与化探, 2022, 46(2): 490-501.
[8] 赵秀芳, 张永帅, 冯爱平, 王艺璇, 夏立献, 王宏雷, 杜伟. 山东省安丘地区农业土壤重金属元素地球化学特征及环境评价[J]. 物探与化探, 2020, 44(6): 1446-1454.
[9] 王增辉. 鲁西南平原区大气干湿沉降元素输入通量及来源浅析:以巨野县为例[J]. 物探与化探, 2020, 44(4): 839-846.
[10] 张钊熔, 段星星, 夏明哲. 白银东大沟水体和底泥中重金属污染评价[J]. 物探与化探, 2019, 43(3): 649-657.
[11] 王卫星, 曹淑萍, 李攻科, 高洪生, 张岩. 天津市州河水质及其底泥重金属污染评价[J]. 物探与化探, 2017, 41(2): 322-327.
[12] 王惠艳, 陈亮, 胡树起, 孙忠军. 渤海湾西部海域表层沉积物重金属含量分布与评价[J]. 物探与化探, 2016, 40(3): 609-613.
[13] 赵西强, 王增辉, 王存龙, 代杰瑞, 刘华峰, 季顺乐. 济南市近地表大气降尘元素地球化学特征及污染评价[J]. 物探与化探, 2016, 40(1): 154-159.
[14] 张建新. 洞庭湖区土壤地球化学基准值与污染等级划分[J]. 物探与化探, 2014, 38(4): 793-799.
[15] 崔元俊, 李肖鹏, 董建, 胡雪平. 山东烟台金矿区及城镇周边土壤重金属化学形态分布及转化[J]. 物探与化探, 2013, 37(6): 1100-1106.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com