Please wait a minute...
E-mail Alert Rss
 
物探与化探  2025, Vol. 49 Issue (4): 768-777    DOI: 10.11720/wtyht.2025.1267
  地质调查资源勘查 本期目录 | 过刊浏览 | 高级检索 |
区域化探数据地质矿产信息提取研究——以甘肃省徽县高桥地区为例
田辽东1(), 龙登红2,3(), 杨涛2,3, 刘海2,3, 马敏雄2,3, 姜洪颖2,3
1.甘肃省地质矿产勘查开发局 水文地质工程地质勘察院, 甘肃 张掖 734000
2.甘肃省矿产资源综合勘查利用与保护工程研究中心, 甘肃 天水 741020
3.甘肃省地质矿产勘查开发局 第一地质矿产勘查院, 甘肃 天水 741020
Extracting geological mineral information from regional geochemical exploration data: A case study of the Gaoqiao area in Huixian County, Gansu Province, China
TIAN Liao-Dong1(), LONG Deng-Hong2,3(), YANG Tao2,3, LIU Hai2,3, MA Min-Xiong2,3, JIANG Hong-Ying2,3
1. Institute of Hydrogeology and Engineering, Gansu Bureau of Geology and Mineral Exploration and Development, Zhangye 734000, China
2. Gansu Engineering Research Center for Comprehensive Exploration Utilization and Protection of Mineral Resources, Tianshui 741020, China
3. The First Institute of Geology and Mineral Exploration, Gansu Bureau of Geology and Mineral Exploration and Development, Tianshui 741020, China
全文: PDF(6159 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

化探数据中地质矿产信息的深入挖掘,是数学地质学和地质大数据的热点研究之一。目前国内积累了丰富的区域化探数据,但对数据中的地质矿产信息深入挖掘有限,需要尝试建立科学有效、简单易行的数据处理流程和分析研究方法。本次以甘肃省徽县高桥地区为研究区域,依据地质背景,根据元素性质与地球化学行为理论对相关元素数据进行处理,挖掘化探数据中蕴藏的地质矿产信息,初步建立了侵入岩体边界圈定和岩相划分的数学模型,科学指导地质填图工作;初步建立构造蚀变岩型金矿床靶区圈定模型,并进行了有效性验证,圈定了7个新的、有较好找矿前景的靶区,通过矿产检查已发现矿点5处,提交矿致异常4处,其中2处正在开展甘肃省地勘基金矿产勘查工作。本次研究成果证明,根据元素地球化学性质原理对数据进行计算处理,可进一步挖掘区域化探数据中的隐藏信息,有效指导和修正地质填图工作,提升填图效率和工作质量;可进一步高质量提取化探异常信息,高质量指导新区找矿工作。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
田辽东
龙登红
杨涛
刘海
马敏雄
姜洪颖
关键词 数据处理地质矿产化探数据挖掘找矿靶区    
Abstract

The deep mining of geological mineral information from geochemical exploration data has been a hot research topic in mathematical geology and geological big data. Despite China's abundant regional geochemical exploration data, the deep mining of geological mineral information from these data remains limited, necessitating a scientific, efficient, simple, and feasible data processing workflow and analytical methodology. This study investigated the Gaoqiao area in Huixian County, Gansu Province, China. According to the geological background and the theories of element properties and geochemical behavior, this study processed relevant element data to mine the geological mineral information in geochemical exploration data. It established preliminary mathematical models for the boundary delineation and lithofacies classification of intermediate-acid rock masses, and the boundary delineation of mafic volcanic rocks in the Gaoqiao area to scientifically guide geological mapping. It preliminarily established the target delineation model for tectonic altered rock-hosted gold deposits. The model's effectiveness was substantiated by seven newly delineated target areas with promising prospecting potential. The mineral inspection identified five ore occurrences, including four reported for anomalies related to mineralization, with two currently under provincial geological exploration. The results of this study show that by calculating and processing data based on the geochemical properties of elements, the hidden information in regional geochemical exploration data can be further mined to effectively guide and modify geological mapping, thereby enhancing mapping efficiency and quality. High-quality anomaly information can be further extracted from geochemical exploration data to effectively guide mineral prospecting in new areas.

Key wordsdata processing    geological minerals    mining of geochemical exploration data    prospecting target
收稿日期: 2024-06-26      修回日期: 2024-11-23      出版日期: 2025-08-20
ZTFLH:  P632  
基金资助:甘肃省自然资源厅科技项目“西秦岭锑矿找矿预测的化探数据处理方法研究”(202228);2024年自然资源重点人才项目“甘肃省宕昌—西和锑矿矿集区成矿规律与找矿方向研究”(2024-1);自然资源部新一轮找矿突破战略行动科技支撑项目“甘肃李子园—太阳寺金矿区构造岩浆控矿体系及深边部找矿预测”(ZKKJ202415)
通讯作者: 龙登红(1987-),男,高级工程师,主要从事区域基础地质调查和找矿研究工作。Email:625571323@qq.com
作者简介: 田辽东(1980-),男,高级工程师,主要从事区域地质和水工环地质调查工作。Email:1057484214@qq.com
引用本文:   
田辽东, 龙登红, 杨涛, 刘海, 马敏雄, 姜洪颖. 区域化探数据地质矿产信息提取研究——以甘肃省徽县高桥地区为例[J]. 物探与化探, 2025, 49(4): 768-777.
TIAN Liao-Dong, LONG Deng-Hong, YANG Tao, LIU Hai, MA Min-Xiong, JIANG Hong-Ying. Extracting geological mineral information from regional geochemical exploration data: A case study of the Gaoqiao area in Huixian County, Gansu Province, China. Geophysical and Geochemical Exploration, 2025, 49(4): 768-777.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2025.1267      或      https://www.wutanyuhuatan.com/CN/Y2025/V49/I4/768
Fig.1  西秦岭金矿地质简图
Fig.2  研究区地质矿产简图
Fig.3  岩浆热液矿床原生晕垂直分带模式示意[38]
Fig.4  高桥地区W元素地球化学分布
Fig.5  高桥地区花岗岩岩体相带推断
Fig.6  利用Co-Ni-Cr组合圈定的基性火山岩
Fig.7  高桥地区Au-Ag-Pb-As-Sb-Hg元素叠加异常
[1] 严光生, 薛群威, 肖克炎, 等. 地质调查大数据研究的主要问题分析[J]. 地质通报, 2015, 34(7):1273-1279.
[1] Yan G S, Xue Q W, Xiao K Y, et al. An analysis of major problems in geological survey big data[J]. Geological Bulletin of China, 2015, 34(7):1273-1279.
[2] 赵鹏大. 大数据时代呼唤各科学领域的数据科学[J]. 中国科技奖励, 2014(9):29-30.
[2] Zhao P D. The era of big data calls for data science in various scientific fields[J]. China Awards for Science and Technology, 2014(9):29-30.
[3] 赵鹏大. 大数据时代数字找矿与定量评价[J]. 地质通报, 2015, 34(7):1255-1259.
[3] Zhao P D. Digital mineral exploration and quantitative evaluation in the big data age[J]. Geological Bulletin of China, 2015, 34(7):1255-1259.
[4] 左仁广, 王健, 熊义辉, 等. 2011—2020年勘查地球化学数据处理研究进展[J]. 矿物岩石地球化学通报, 2021, 40(1):81-93.
[4] Zuo R G, Wang J, Xiong Y H, et al. Progresses of Researches on Geochemical Exploration Data Processing During 2011—2020[J]. Bulletin of Mineralogy,Petrology and Geochemistry, 2021, 40(1):81-93.
[5] 左仁广. 勘查地球化学数据处理方法研究进展[J]. 地质论评, 2013, 59(S):1027-1028.
[5] Zuo R G. Research progress on data processing methods for exploration geochemistry[J]. Geological Review, 2013, 59(S):1027-1028.
[6] 左仁广. 勘查地球化学数据挖掘与弱异常识别[J]. 地学前缘. 2019, 26(4):67-75.
doi: 10.13745/j.esf.sf.2018.6.25
[6] Zuo R G. Exploration geochemical data mining and weak geochemical anomalies identification[J]. Earth Science Frontiers, 2019, 26(4):067-075.
[7] 张宝一, 陈伊如, 黄岸烁, 等. 地球化学场及其在隐伏矿体三维预测中的作用[J]. 岩石学报, 2018, 34(2):352-362.
[7] Zhang B Y, Chen Y R, Huang A S, et al. Geochemical field and its roles on the 3D prediction of concealed ore-bodies[J]. Acta Petrologica Sinica, 2018, 34(2):352-362.
[8] 任文秀, 罗建民, 孙柏年, 等. 化探数据挖掘在金矿找矿及靶区优选中的应用——以甘肃玉石山地区为例[J]. 岩石学报, 2018, 34(11):3225-3234.
[8] Ren W X, Luo J M, Sun B N, et al. Application of geochemical data in gold prospecting and target selecting:Taking the Yushishan area in Gansu Province as a case[J]. Acta Petrologica Sinica, 2018, 34(11):3225-3234.
[9] 罗建民, 张旗. 大数据开创地学研究新途径:查明相关关系,增强研究可行性[J]. 地学前缘, 2019, 26(4):6-12.
doi: 10.13745/j.esf.sf.2019.4.28
[9] Luo J M, Zhang Q. Big data pioneers new ways of geoscience research:Identifying relevant relationships to enhance research feasibility[J]. Earth Science Frontiers, 2019, 26(4):6-12.
[10] 毛先成, 王迷军, 刘占坤, 等. 基于勘查数据的胶东大尹格庄金矿床控矿地质因素定量分析[J]. 地学前缘, 2019, 26(4):84-93.
doi: 10.13745/j.esf.2019.04.010
[10] Mao X C, Wang M J, Liu Z K, et al. Quantitative analysis of ore-controlling factors based on exploration data of the Dayingezhuang gold deposit in the Jiaodong Peninsula[J]. Earth Science Frontiers, 2019, 26(4):84-93.
doi: 10.13745/j.esf.2019.04.010
[11] Omaljev VT. Definitions of the concepts of geochemical field,background,and noise[J]. Geochemical. 1987, 24(2):1-6.
[12] 谢学锦. 从勘查地球化学到应用地球化学[J]. 物探与化探, 2003, 27(6):412-415.
[12] Xie X J. From exploration geochemistry to applied geochemistry[J]. Geophysical and Gechemical Exploration, 2003, 27(6):412-415.
[13] 韩吟文, 马振东, 张宏飞, 等. 地球化学[M]. 北京: 地质出版社. 2003.
[13] Han Y W, Ma Z D, Zhang H F, et al. Geochemistry[M]. Beijing: Geological Publishing House, 2003.
[14] 张德会, 赵仑山, 张本仁, 等. 地球化学[M]. 北京: 地质出版社, 2013.
[14] Zhang D H, Zhao L S, Zhang B R, et al. Geochemistry[M]. Beijing: Geological Publishing House, 2013.
[15] 叶天竺, 吕志成, 庞振山, 等. 勘查区找矿预测理论与方法:总论[M]. 北京: 地质出版社, 2014.
[15] Ye T Z, Lyu Z C, Pang Z S, et al. Theory and method of prospecting prediction in exploration area:General introduction[M]. Beijing: Geological Publishing House, 2014.
[16] 张本仁, 谷晓明, 蒋敬业. 应用成矿环境标志于地球化学找矿的研究[J]. 物探与化探, 1989, 13(2):108-115.
[16] Zhang B R, Gu X M, Jiang J Y. The application of ore-forming environmentalindicators to geochemical exploration[J]. Geophysical and Geochemical Exploration, 1989, 13(2):108-115.
[17] 李惠, 张国义, 禹斌. 金矿区深部盲矿预测的构造叠加晕模型及找矿效果[M]. 北京: 地质出版社, 2006.
[17] Li H, Zhang G Y, Yu B. Structural superimposed halo model for deep blind ore prediction in gold mining area and its prospecting effect[M]. Beijing: Geological Publishing House, 2006.
[18] 陈建国, 王仁铎, 陈永清. 利用分形统计学提取化探数据中的隐蔽信息并圈定地球化学异常[J]. 地球科学, 1998, 23(2):175-178.
[18] Chen J G, Wang R D, Chen Y Q. The extraction of concealed fractal information and the delineation of geochemical anomalies by fractal methods[J]. Earth Science, 1998, 23(2):175-178.
[19] 肖斌, 赵鹏大, 侯景儒. 归来庄金矿床综合化探金异常的地质统计学研究[J]. 北京大学学报:自然科学版, 2000, 36(4):531-538.
[19] Xiao B, Zhao P D, Hou J R. Geostatistical study of Au-comprehensive chemical exploratory anomaly at Guilaizhuang Au-deposit[J]. Acta Scicentiarum Naturalum Universitis Pekinesis, 2000, 36(4):531-538.
[20] 刘向冲, 侯翠霞, 申维, 等. MML-EM方法及其在化探数据混合分布中的应用[J]. 地球科学, 2011, 36(2):355-359.
[20] Liu X C, Hou C X, Shen W, et al. MML-EM algorithm and its application on mixed distributions of geochemical data[J]. Earth Science, 2011, 36(2):355-359.
[21] 李鸿儒. 东天山奥特奥尔拉地区化探异常信息的提取及评价[D]. 兰州: 西北师范大学, 2013.
[21] Li H R. Extraction and assessment of geochemical anomaly information of aoteaoerla area in east Tianshan[D]. Lanzhou: Northwest Normal University, 2013.
[22] 黄静宁. 应用地质统计学方法圈定和评价地球化学异常[D]. 北京: 中国地质大学(北京), 2007.
[22] Huang J N. Delineation and estimation of geochemical anomaly using geostatistical methods[D]. Beijing: China University of Geosciences, 2007.
[23] 林鑫, 周军, 张兵. 基于主成分分析的化探异常圈定新方法—以新疆西准噶尔地区1∶50 000岩屑数据为例[J]. 地质找矿论丛, 2012, 27(4):516-521.
[23] Liu X, Zhou J, Zhang B. A new principal component analysis-based method for lineation of geochemical anomalies:A case study of detritus data (1/50 000) of Western Junggar,Xinjiang[J]. Contributions to Geology and Mineral Resources Research, 2012, 27(4):516-521.
[24] 李随民, 姚书振. 基于MAPGIS的分形方法确定化探异常[J]. 地球学报, 2005, 26(2):187-190.
[24] Li S M, Yao S Z. The determination of thresholds by the fractal method based on MAPGIS[J]. Acta Geosicientia Sinica, 2005, 26(2):187-190.
[25] 李宾, 李随民, 梁玉明, 等. 分形方法圈定河北省龙关地区化探元素异常[J]. 地质调查与研究, 2011, 34(2):154-161.
[25] Li B, Li S M, Liang Y M, et al. Determination of geochemical anomalies by the fractal method in the longguan area,Heibei Province[J]. Geological Survey and Research, 2011, 34(2):154-161.
[26] Cheng Q M, Agterberg F P, Ballantyne S B. The separation of geochemical anomalies from background by fractal methods[J]. Journal of Geochemical Exploration, 1994, 51(2):109-130.
[27] Cheng Q M. Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu,Yunnan Province,China[J]. Ore Geology Reviews, 2007, 32(1/2):314-324.
[28] 徐明钻, 朱立新, 马生明, 等. 多重分形模型在区域地球化学异常分析中的应用探讨[J]. 地球学报, 2010, 31(4):611-618.
[28] Xu M Z, Zhu L X, Ma S M, et al. A tentative discussion on the application of multi-fractal models to the analysis of regional geochemical anomalies[J]. Acta Geoscientica Sinica, 2010, 31(4):611-618.
[29] 邱炜, 李杰, 杨鸿鹏. 衬值法在大数据地球化学图件处理中的应用——以青海锡铁山地区为例[J]. 矿产勘查, 2018, 9(6):1271-1275.
[29] Qiu W, Li J, Yang H P. The application of contrast value method on processing big data geochemical maps:The case of the Xitieshan area in Qinghai[J]. Mineral Exploration, 2018, 9(6):1271-1275.
[30] 王瑞廷, 毛景文, 任小华, 等. 区域地球化学异常评价的现状及其存在的问题[J]. 中国地质, 2005, 32(1):168-175.
[30] Wang R T, Mao J W, Ren X H, et al. Facts and problems of the evaluation of regional geochemical anomalies[J]. Chinese Geology, 2005, 32(1):168-175.
[31] 第鹏飞, 吴建福, 王蓉, 等. 甘肃省紧缺战略性矿产资源国情调查成果报告(金矿)[R]. 甘肃省自然资源厅, 2022.
[31] Di P F, Wu J F, Wang R, et al. Report on the national survey results of strategic mineral resources in gansu province (Gold Mine)[R]. Department of Natural Resources of Gansu Province, 2022.
[32] 吴建福, 郝贺超, 刘海, 等. 甘肃省天水市柴家庄—太阳寺地区金及多金属矿整装勘查区矿产调查与找矿预测[R]. 中国地质调查局发展研究中心, 2019.
[32] Wu J F, Hao H C, Liu H, et al. Mineral investigation and prospecting prediction in the integrated exploration area of Chaijiazhuang Taiyangsi gold mine in Gansu Province[R]. Development and Research Center,China Geological Survey, 2019.
[33] Mao J W, Qiu Y M, Goldfarb R J, et al. Geology, distribution,and classification of gold deposits in the western Qinling belt,Central China[J]. Mineralium Deposita, 2002, 37(3):352-377.
[34] Yang T, Zhu L M, Wang F, et al. Geochemistry, petrogenesis and tectonic implications of granitic plutons at the Liziyuan orogenic goldfield in the Western Qinling Orogen,Central China[J]. Geological Magazine, 2013, 150(1):50-71.
[35] Zeng Q T, McCuaig T C, Hart C J R, et al. Structural and geochronological studies on the liba goldfield of the west Qinling Orogen,Central China[J]. Mineralium Deposita, 2012, 47(7):799-819.
[36] 刘海, 马敏雄, 张润晖, 等. 甘肃省陇南市高桥—太白地区1∶5万矿产远景调查成果报告[R]. 甘肃省地矿局第一地质矿产勘查院, 2022.
[36] Liu H, Ma M X, Zhang R H, et al. 1∶50 000 Mineral Prospect Survey Report in Gaoqiao District,Longnan City,Gansu Province[R]. The First Institute of Geology and Mineral Exploration,Gansu Provincial Bureau of Geology and Mineral Exploration, 2022.
[37] 邵跃. 矿床元素原生分带的研究及其在地球化学找矿中的应用[J]. 地质与勘探, 1984, 20(2):47-55.
[37] Shao Y. Study on primary zoning of elements in mineral deposits and its application in geochemical prospecting[J]. Geology and Prospecting, 1984, 20(2):47-55.
[38] 张大伟. 基于多元素数据融合的化探异常评判[D]. 长春: 吉林大学, 2015.
[38] Zhang D W. Evaluation of geochemical anomalies based on the multiple element data fusion[D]. Changchun: Jilin University, 2015.
[39] Xiong Y H, Zuo R G, Wang K X, et al. Identification of geochemical anomalies via local RX anomaly detector[J]. Journal of Geochemical Exploration, 2018,189:64-71.
[40] Zuo R G. Selection of an elemental association related to mineralization using spatial analysis[J]. Journal of Geochemical Exploration, 2018,184:150-157.
[1] 蔡鑫磊, 李谦益, 沈鸿雁, 张阳, 杨飞龙, 张国强, 张宇航, 李萌瑶. 渭河盆地氦气资源勘探地震数据处理难点及对策——以华州—华阴地区为例[J]. 物探与化探, 2025, 49(3): 548-558.
[2] 沈东义, 袁秋霞, 张洁, 李会弟. 多类型地震数据自动化处理成图软件的研究与实现[J]. 物探与化探, 2023, 47(6): 1555-1562.
[3] 邰文星, 杨成富, 靳晓野, 邵云彬, 刘光富, 赵平, 王泽鹏, 谭礼金. 多维度化探异常研究在黔西南者相金矿床深部成矿预测中的应用[J]. 物探与化探, 2023, 47(4): 856-867.
[4] 岳航羽, 王小江, 王磊, 陈孝强, 姜春香, 李培, 张保卫. 深部金属矿地震数据处理关键技术研究——以内蒙古查干花钼矿区为例[J]. 物探与化探, 2022, 46(6): 1315-1326.
[5] 肖关华, 张伟, 陈恒春, 卓武, 王艳君, 任丽莹. 浅层地震技术在济南地下空间探测中的应用[J]. 物探与化探, 2022, 46(1): 96-103.
[6] 雍凡, 刘子龙, 蒋正中, 罗水余, 刘建生. 城市三维地震资料处理浅层成像关键技术[J]. 物探与化探, 2021, 45(5): 1266-1274.
[7] 朱云起, 李帝铨, 王金海. 基于MySQL的广域电磁法数据处理与解释软件[J]. 物探与化探, 2021, 45(4): 1030-1036.
[8] 孟庆奎, 周坚鑫, 舒晴, 高维, 徐光晶, 王晨阳. 理论模型分析卡尔曼滤波在航空全张量磁力梯度测量中的应用效果[J]. 物探与化探, 2021, 45(2): 473-479.
[9] 周明磊, 汝亮, 朱裕振, 于长春, 吴成平, 高志军, 张文艳, 邵玉宝. 山东齐河—禹城地区重磁场特征及找矿预测[J]. 物探与化探, 2021, 45(2): 301-307.
[10] 戚宾, 王祥春, 赵庆献. 海洋电火花震源地震勘探研究进展[J]. 物探与化探, 2020, 44(1): 107-111.
[11] 朱裕振, 强建科, 王林飞, 张文艳, 戴世坤. 深埋铁矿磁测数据三维反演分析与找矿靶区预测[J]. 物探与化探, 2019, 43(6): 1182-1190.
[12] 宋豪, 张义蜜, 王万银. 河南内黄—浚县一带重磁异常与深部磁铁矿靶区预测研究[J]. 物探与化探, 2019, 43(6): 1191-1204.
[13] 李凯, 廖咏, 黄凝, 陈红生, 袁晶, 刘小龙. 新疆巴里坤望洋台一带1∶5万水系沉积物测量异常特征及找矿靶区优选[J]. 物探与化探, 2019, 43(6): 1236-1245.
[14] 张虹, 周能, 邓肖丹, 王萌, 李行素. 国外航空重力测量与数据处理技术最新进展[J]. 物探与化探, 2019, 43(5): 1015-1022.
[15] 龚俊波, 王洪华, 王敏玲, 罗泽明. 逆时偏移在探地雷达数据处理中的应用[J]. 物探与化探, 2019, 43(4): 835-842.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com