Please wait a minute...
E-mail Alert Rss
 
物探与化探  2025, Vol. 49 Issue (2): 404-410    DOI: 10.11720/wtyht.2025.1300
  方法研究信息处理仪器研制 本期目录 | 过刊浏览 | 高级检索 |
最小均值交叉熵的时频峰值滤波在探地雷达信号去噪中的应用
郑伟1(), 田仁飞1(), 高雨含1, 武斌2
1.成都理工大学 地球物理学院,四川 成都 610059
2.四川省地球物理调查研究所,四川 成都 610072
Application of time-frequency peak filtering with minimum mean cross-entropy in ground penetrating radar signal denoising
ZHENG Wei1(), TIAN Ren-Fei1(), GAO Yu-Han1, WU Bin2
1. College of Geophysics, Chengdu University of Technology, Chengdu 610059, China
2. Sichuan Geophysical Survey and Research Institute, Chengdu 610072, China
全文: PDF(4113 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

在探地雷达的实际探测作业中,环境噪声与仪器误差等不利因素常导致信号中混杂大量噪声,严重削弱了信号品质及分析结果的可信度。鉴于此,提出了一种融合最小均值交叉熵的时频峰值滤波方法(TFPF-MMCE)用于探地雷达信号的去噪处理。该方法将时频峰值滤波技术与交叉熵函数相结合,通过精准优化信号的时频表征,实现了对噪声的有效抑制与有效信号的精准保留,从而显著提升了探地雷达信号的质量。通过数值模拟与实地探地雷达实验验证,TFPF-MMCE具有很好的噪声去除能力,能够有效去除信号中的随机噪声,显著提升了信号的清晰度与可靠性。相较于传统的去噪方法,TFPF-MMCE在去噪效果与抗噪稳定性上均展现出显著优势,预示着其在探地雷达信号处理领域的广泛应用前景与重要实践价值。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郑伟
田仁飞
高雨含
武斌
关键词 探地雷达最小均值交叉熵去噪时频峰值滤波时频分析    
Abstract

In practical detection operations using ground-penetrating radar (GPR), factors such as environmental noise and instrument errors frequently cause signals to be mixed with substantial noise, seriously reducing signal quality and the reliability of analytical results. To address this issue, this study proposed a time-frequency peak filtering method combined with minimum mean cross-entropy (TFPF-MMCE) for denoising GPR signals. This method combined time-frequency peak filtering with the cross-entropy function, enabling effective noise suppression and precise preservation of valid signals through precise optimization of the time-frequency representation, thereby significantly improving the quality of GPR signals. Numerical simulation and field GPR experiments validated that the TFPF-MMCE method exhibited a high noise removal capability and, thus, can effectively eliminate random noise while significantly improving signal clarity and reliability. Compared to traditional denoising methods, TFPF-MMCE shows significant advantages in denoising effectiveness and noise resistance stability, suggesting promising application potential and practical value in the field of GPR signal processing.

Key wordsground penetrating radar    minimum mean cross-entropy    denoising    time-frequency peak filtering    time-frequency analysis
收稿日期: 2024-07-18      修回日期: 2024-11-22      出版日期: 2025-04-20
ZTFLH:  P631.4  
基金资助:国家自然科学基金项目(41304080)
通讯作者: 田仁飞(1983-),男,副教授,主要从事地球物理信号处理、综合地球物理勘探等方面的研究工作。Email:tianrenfei08@cdut.cn
作者简介: 郑伟(1999-),男,硕士,主要研究方向为工程物探。Email:1131270650@qq.com
引用本文:   
郑伟, 田仁飞, 高雨含, 武斌. 最小均值交叉熵的时频峰值滤波在探地雷达信号去噪中的应用[J]. 物探与化探, 2025, 49(2): 404-410.
ZHENG Wei, TIAN Ren-Fei, GAO Yu-Han, WU Bin. Application of time-frequency peak filtering with minimum mean cross-entropy in ground penetrating radar signal denoising. Geophysical and Geochemical Exploration, 2025, 49(2): 404-410.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2025.1300      或      https://www.wutanyuhuatan.com/CN/Y2025/V49/I2/404
Fig.1  TFPF-MMCE算法流程
Fig.2  探地雷达地质模型及其正演记录
Fig.3  第46道探地雷达加噪声信号
Fig.4  2种方法的时频峰值滤波去噪效果对比
Fig.5  不同信噪比下的RMSE和PSNR
去噪方法 RMSE/10-4 PSNR
TFPF-PWV 5.37 65.38
TFPF-MMCE 3.24 69.78
双边滤波 3.74 68.55
FIR滤波 7.51 62.48
均值滤波 3.83 68.34
小波变换 3.32 69.56
Table 1  多种方法去噪效果对比
Fig.6  实测探地雷达时频峰值滤波效果
Fig.7  消除直达波后的时频峰值滤波效果
[1] 冯垣, 曾昭发, 刘四新, 等. 探地雷达信号处理[M]. 北京: 科学出版社, 2014.
[1] Feng Y, Zeng Z F, Liu S X, et al. Ground-penetrating radar signal processing[M]. Beijing: Science Press, 2014.
[2] 杨林. 探地雷达铁路轨枕干扰特性分析[J]. 物探化探计算技术, 2024, 46(4):453-461.
[2] Yang L. Analysis of interference characteristics of ground penetrating radar railway sleepers[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2024, 46(4):453-461.
[3] 张斯薇, 吴荣新, 韩子傲, 等. 双边滤波在探地雷达数据去噪处理中的应用[J]. 物探与化探, 2021, 45(2):496-501.
[3] Zhang S W, Wu R X, Han Z A, et al. The application of bilateral filtering to denoise processing of ground penetrating radar data[J]. Geophysical and Geochemical Exploration, 2021, 45(2):496-501.
[4] 张先武, 高云泽, 方广有. 带有低通滤波的广义S变换在探地雷达层位识别中的应用[J]. 地球物理学报, 2013, 56(1):309-316.
[4] Zhang X W, Gao Y Z, Fang G Y. Application of generalized S transform with lowpass filtering to layer recognition of Ground Penetrating Radar[J]. Chinese Journal of Geophysics, 2013, 56(1):309-316.
[5] 黄敏, 朱德兵, 郭政学, 等. 连续小波变换在探地雷达信号分析中的应用研究[J]. 物探化探计算技术, 2012, 34(5):593-598,503.
[5] Huang M, Zhu D B, Guo Z X, et al. Research on the application of continuous wavelet transform in gpr signal analysis[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2012, 34(5):593-598,503.
[6] Javadi M, Ghasemzadeh H. Wavelet analysis for ground penetrating radar applications:A case study[J]. Journal of Geophysics and Engineering, 2017, 14(5):1189-1202.
[7] Xu J C, Ren Q, Shen Z Z. Ground-penetrating radar time-frequency analysis method based on synchrosqueezing wavelet transformation[J]. Journal of Vibroengineering, 2016, 18:315-323.
[8] 吴楠, 吴舰, 吴志坚. 探地雷达信号消噪中的时频谱分解重排算法[J]. 物探与化探, 2018, 42(1):220-224.
[8] Wu N, Wu J, Wu Z J. Research on denoising of ground penetrating radar signals using the time-frequency spectral decomposition reassignment algorithm[J]. Geophysical and Geochemical Exploration, 2018, 42(1):220-224.
[9] 余世为, 牛刚, 覃晖, 等. 隧道超前地质预报溶洞探地雷达数据时频分析[J]. 工程勘察, 2023, 51(10):67-72.
[9] Yu S W, Niu G, Qin H, et al. Time and frequency analysis of GPR data for tunnel geological forecast of Karst caves[J]. Geotechnical Investigation & Surveying, 2023, 51(10):67-72.
[10] Li J, Zhao X L, Cheng H, et al. Data augmentation and denoising of magnetotelluric signals based on CS-ResNet[J]. Geophysics, 2025, 90(3):WA31-WA46.
[11] 李月, 杨宝俊, 林红波, 等. 地震资料中随机强噪声压制——时频峰值滤波[J]. 中国科学:地球科学, 2013, 43(7):1123-1131.
[11] Li Y, Yang B J, Lin H B, et al. Suppression of strong random noise in seismic data by using time-frequency peak filtering[J]. Scientia Sinica:Terrae, 2013, 43(7):1123-1131.
[12] 林红波, 马海涛, 李月, 等. 基于SW统计量的自适应时频峰值滤波压制地震勘探随机噪声研究[J]. 地球物理学报, 2015, 58(12):4559-4567.
doi: 10.6038/cjg20151218
[12] Lin H B, Ma H T, Li Y, et al. Elimination of seismic random noise based on the SW statistic adaptive TFPF[J]. Chinese Journal of Geophysics, 2015, 58(12):4559-4567.
[13] Liu Y, Peng Z, Wang Y, et al. Seismic noise attenuation by time-frequency peak filtering based on Born-Jordan distribution[J]. Journal of Seismic Exploration, 2018, 27(6):557-575.
[14] Liu N H, Yang Y, Li Z, et al. Seismic signal de-noising using time-frequency peak filtering based on empirical wavelet transform[J]. Acta Geophysica, 2020, 68(2):425-434.
[15] Boashash B, Mesbah M. Signal enhancement by time-frequency peak filtering[J]. IEEE Transactions on Signal Processing, 2004, 52(4):929-937.
[16] Loughlin P, Pitton J, Hannaford B. Approximating time-frequency density functions via optimal combinations of spectrograms[J]. IEEE Signal Processing Letters, 1994, 1(12):199-202.
[17] Groutage D. A fast algorithm for computing minimum cross-entropy positive time-frequency distributions[J]. IEEE Transactions on Signal Processing, 1997, 45(8):1954-1970.
[18] Shah S I, Loughlin P J, Chaparro L F, et al. Informative priors for minimum cross-entropy positive time-frequency distributions[J]. IEEE Signal Processing Letters, 1997, 4(6):176-177.
[19] Aviyente S, Williams W J. Minimum entropy time-frequency distributions[J]. IEEE Signal Processing Letters, 2005, 12(1):37-40.
[20] Moca V V, Bârzan H, Nagy-Dăbâcan A, et al. Time-frequency super-resolution with superlets[J]. Nature Communications, 2021, 12(1):337.
doi: 10.1038/s41467-020-20539-9 pmid: 33436585
[1] 李博, 李长伟, 罗润林, 吕玉增, 王占. 基于VMD-LSTM对大地电磁信号进行噪声检测和预测重构[J]. 物探与化探, 2025, 49(1): 100-117.
[2] 周鑫, 王洪华, 王欲成, 吴祺铭, 王浩林, 刘洪瑞. 基于共偏移距GPR信号包络和三维速度谱分析的介质电磁波速度估计方法[J]. 物探与化探, 2024, 48(6): 1693-1701.
[3] 杨浩, 邹杰, 程丹丹, 于景兰. 探地雷达在临海市古长城内部结构检测中的应用分析[J]. 物探与化探, 2024, 48(6): 1741-1746.
[4] 袁晓满, 李相文, 张洁, 但光箭, 卢忠沅, 韩重阳, 张磊, 许建洋. 基于改进广义S变换时频分析的“板状”断控油藏油柱高度预测[J]. 物探与化探, 2024, 48(3): 768-776.
[5] 李文杰, 张华, 任望, 叶海龙, 武召祺, 杨熙熙, 彭清. 基于降秩和稀疏联合约束的地震数据同时重建和去噪[J]. 物探与化探, 2024, 48(2): 479-488.
[6] 邵泉杰, 孙灵芝. 基于EMD和KL变换的时空联合探地雷达杂波抑制[J]. 物探与化探, 2024, 48(2): 508-513.
[7] 郝社锋, 田少兵, 梅荣, 彭荣华, 李兆令. 高干扰矿集区大地电磁噪声抑制技术探索[J]. 物探与化探, 2024, 48(1): 162-174.
[8] 尹达, 辛国亮, 孙学超, 张友源, 张其道. 实时三维探地雷达关键技术的设计与实现[J]. 物探与化探, 2024, 48(1): 194-200.
[9] 席宇何, 王洪华, 王欲成, 吴祺铭. 基于速度移动窗的最小熵法在GPR逆时偏移中的应用[J]. 物探与化探, 2023, 47(5): 1250-1260.
[10] 吴嵩, 宁晓斌, 杨庭伟, 姜洪亮, 卢超波, 苏煜堤. 基于神经网络的探地雷达数据去噪[J]. 物探与化探, 2023, 47(5): 1298-1306.
[11] 曾波, 刘硕, 杨军, 冯德山, 袁忠明, 柳杰, 王珣. 地表起伏对地下管线GPR探测的影响[J]. 物探与化探, 2023, 47(4): 1064-1070.
[12] 张金强. 基于正则化理论的时频分析方法及应用[J]. 物探与化探, 2023, 47(4): 965-974.
[13] 王欲成, 王洪华, 苏鹏锦, 龚俊波, 席宇何. 地下供水管线渗漏的探地雷达模拟探测试验分析[J]. 物探与化探, 2023, 47(3): 794-803.
[14] 徐立, 冯温雅, 姜彦南, 王娇, 朱四新, 覃紫馨, 李沁璘, 张世田. 基于行列方差方法的探地雷达道路数据感兴趣区域自动提取技术[J]. 物探与化探, 2023, 47(3): 804-809.
[15] 冯温雅, 程丹丹, 王成浩, 程星. 基于探地雷达等效采样的时变零偏实时校正方法[J]. 物探与化探, 2023, 47(2): 372-376.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com