Please wait a minute...
E-mail Alert Rss
 
物探与化探  2024, Vol. 48 Issue (3): 858-867    DOI: 10.11720/wtyht.2024.3686
  生态地质调查 本期目录 | 过刊浏览 | 高级检索 |
广西荔浦市土壤—农作物中重金属迁移转化及生态效应
蒋羽雄1,2(), 文美兰1, 潘启明2(), 蒋柏昌2, 王忠伟2
1.桂林理工大学 地球科学学院,广西 桂林 541006
2.广西壮族自治区区域地质调查研究院,广西 桂林 541003
The migration,transformation and ecological effects of heavy metals in soil-cropsystem in Lipu, Guangxi
JIANG Yu-Xiong1,2(), WEN Mei-Lan1, PAN Qi-Ming2(), JIANG Bo-Chang2, WANG Zhong-Wei2
1. College of Earth Sciences,Guilin University of Technology, Guilin 541006, China
2. Regional Geological Survey Research Institute of Guangxi, Guilin541003, China
全文: PDF(4245 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

为了解荔浦市土壤和农作物中重金属含量及其分布特征,采集荔浦市土壤及农作物(水稻、荔浦芋、柑橘、马蹄)样品,测定土壤样品pH值、As、Cd、Cr、Hg、Ni、Pb、Cu、Zn全量以及As、Cd、Cr、Hg、Pb的形态含量,农作物样品测定了As、Cd、Cr、Hg、Pb含量,计算出重金属元素的生物富集系数(BCF),探讨了土壤—农作物系统中重金属元素迁移转化和生态效应。结果表明:①区内表层土壤以酸性土壤为主,As、Cd、Cr、Hg、Ni、Pb、Cu、Zn平均含量分别为13.57×10-6、0.33×10-6、87.06×10-6、0.153×10-6、27.49×10-6、30.46×10-6、27.94×10-6、82.53×10-6,均高于全国土壤背景值。②农作物中水稻样品中的重金属含量较荔浦芋、柑橘、马蹄中高,且水稻根、茎、籽实中重金属含量也不同。③重金属元素的生物富集系数在水稻中普遍偏高,水稻根部生物富集系数最大,籽实最小。重金属在土壤—水稻系统的迁移能力显著高于荔浦芋、柑橘和马蹄。④Cd是研究区最活跃的土壤重金属元素,其可交换态占全量比例显著高于As、Cr、Hg、Pb,应重点关注Cd的生态风险情况,防止农作物Cd超标对人类产生危害。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
蒋羽雄
文美兰
潘启明
蒋柏昌
王忠伟
关键词 荔浦市土壤农作物重金属迁移转化生态效应    
Abstract

In order to understand the content and distribution characteristics of heavy metals in soil and crops in Lipu,soil and crops (rice, Lipu taro, citrus, water chestnut) were collected. Todetermine the pH value of soil samples and the total amount of As, Cd, Cr, Hg, Ni, Pb, Cu, Zn and the form content of As, Cd, Cr, Hg, and Pb.The content of As, Cd, Cr, Hg, Pb in crop samples was measured.The bioconcentration factor (BCF) of heavy metal elements was calculated. The migration and transformation and ecological effects of heavy metal in the soil-crop system are analyzed. The results showed that:① The topsoil in the study area is predominantly acidic in the study area. The average contents of As, Cd, Cr, Hg, Ni, Pb, Cu, and Zn in the surface soil in the area were 13.57×10-6, 0.33×10-6, 87.06×10-6, 0.153×10-6, 27.49×10-6, 30.46×10-6, 27.94×10-6, 82.53×10-6.Respectively, all of which were higher than the national soil background values.②The heavy metal content in rice crops is higher than that in Lipu taro, citrus, and horseshoe.The heavy metal content is also different in rice roots, stems, and seeds.③ The bioaccumulation coefficient of heavy metal was generally high in rice. When comparing different parts of rice, the bioconcentration coefficients of heavy metals were greatest in the roots and least in the seeds. And when comparing different crops, the migration capacity of heavy metals in the soil-rice system was significantly higher than that of Lipu taro, citrus and water chestnut.④ The exchangeable state of Cd in the study area is significantly higher than As, Cr, Hg, and Pb. Cd is the most active soil heavy metal in the study area, it should be paid more attention to prevent excessive Cd in crops from causing harm to people.

Key wordsLipu city    heavy metals    soil    crops    migration and transformation    ecological effects
收稿日期: 2021-12-17      修回日期: 2022-04-25      出版日期: 2024-06-20
ZTFLH:  X53  
基金资助:广西科技计划项目(2021JJA150037);广西壮族自治区财政专项资金项目(桂地矿办[2017]33号)
通讯作者: 潘启明(1992-),男,工程师,主要从事勘查地球化学和矿产地质工作。Email:651208474@qq.com
作者简介: 蒋羽雄(1998-),男,硕士,主要研究方向为环境地球化学。Email: 1804485346@qq.com
引用本文:   
蒋羽雄, 文美兰, 潘启明, 蒋柏昌, 王忠伟. 广西荔浦市土壤—农作物中重金属迁移转化及生态效应[J]. 物探与化探, 2024, 48(3): 858-867.
JIANG Yu-Xiong, WEN Mei-Lan, PAN Qi-Ming, JIANG Bo-Chang, WANG Zhong-Wei. The migration,transformation and ecological effects of heavy metals in soil-cropsystem in Lipu, Guangxi. Geophysical and Geochemical Exploration, 2024, 48(3): 858-867.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2024.3686      或      https://www.wutanyuhuatan.com/CN/Y2024/V48/I3/858
Fig.1  研究区地质图(根据文献[3]修改)
1—桂平组;2—望高组;3—孤峰组;4—栖霞组;5—大埔组;6—黄金组;7—英塘组;8—鹿寨组;9—融县组;10—五指山组;11—榴江组;12—东村组;13—桂林组;14—巴漆组;15—唐家湾组;16—东岗岭组;17—信都组;18—信都组上段;19—信都组下段;20—四排组;21—大乐组;22—贺县组;23—莲花山组;24—整合岩层界线;25—岩层产状;26—实测正断层;27—实测逆断层;28—区域性断层;29—工作区;30—河流;31—石灰岩矿(床)点;32—黏土矿(床)点;33—铅矿(床)点;34—铁矿(床)点;35—锰矿(床)点;36—多金属矿(床)点;37—金矿(床)点;38—硅化
Fig.2  农作物采样点位
序号 提取方法 相态 测试方法
1 2.5000 g样品25 mL水提取 水溶态 ICP-MS测定Pb、
Cd、Cr,
AFS测定As、Hg
2 残渣用25 mL MgCl2溶液提取 离子交换态
3 残渣用25 mL NaAc溶液提取 碳酸盐结合态
4 残渣用50 mL Na4P2O7溶液提取 腐殖酸结合态
5 残渣用25 mL HONH3Cl溶液提取 铁锰氧化态
6 残渣用8 mL H2O2-HNO3溶液恒温水浴提取 强有机结合态
7 0.2000 g残渣,HNO3-HClO4溶解 残渣态
Table 1  土壤重金属形态分析方法配套方案
元素 均值/10-6 变异系数 极小值/10-6 极大值/10-6 全国土壤背景值[8] /10-6 广西土壤背景值[8] /10-6
As 13.57 1.10 1.22 278.00 11.2 20.50
Cd 0.33 1.46 0.03 9.24 0.10 0.27
Cr 87.06 0.57 12.60 785.00 61.00 82.10
Hg 0.15 0.65 0.02 1.61 0.07 0.15
Ni 27.49 0.88 5.45 513.00 26.90 26.60
Pb 30.46 0.45 10.30 354.00 26.00 24.00
Cu 27.94 0.47 6.20 182.00 22.60 27.80
Zn 82.53 0.55 18.70 414.00 74.20 75.60
Table 2  土壤重金属元素含量特征值统计(n=3967)
元素 均值/10-6 标准差/10-6 变异系数 极小值/10-6 极大值/10-6 中值/10-6
水稻籽实
(n=30)
As 0.183 0.153 0.837 0.110 0.950 0.150
Cd 0.138 0.278 2.016 0.006 1.190 0.030
Cr 0.099 0.013 0.127 0.082 0.120 0.095
Hg 0.006 0.008 1.351 0.002 0.043 0.003
Pb 0.057 0.004 0.073 0.050 0.069 0.057
水稻茎叶
(n=10)
As 2.655 1.075 0.405 0.590 4.800 2.565
Cd 0.639 0.782 1.224 0.014 2.210 0.209
Cr 4.269 0.598 0.14 3.470 5.040 4.405
Hg 0.009 0.001 0.166 0.007 0.011 0.008
Pb 0.386 0.124 0.322 0.260 7.000 0.350
水稻根
(n=10)
As 62.29 40.21 0.646 13.900 140.000 57.650
Cd 1.307 1.413 1.081 0.068 3.410 0.550
Cr 22.18 7.242 0.326 14.300 35.60 20.750
Hg 0.021 0.007 0.336 0.012 0.034 0.023
Pb 5.332 1.846 0.346 2.310 8.190 5.485
荔浦芋
(n=18)
As 0.009 0.002 0.176 0.006 0.012 0.008
Cd 0.095 0.061 0.647 0.008 0.185 0.097
Cr 0.030 0.005 0.171 0.017 0.041 0.030
Hg 0.002 0.001 0.423 0.000 0.003 0.002
Pb 0.032 0.015 0.456 0.012 0.062 0.030
柑橘
(n=46)
As 0.0076 0.0013 0.166 0.0059 0.0110 0.0076
Cd 0.0011 0.0002 0.183 0.0000 0.0016 0.0011
Cr 0.0239 0.0028 0.119 0.0200 0.0330 0.0230
Hg 0.0002 0.0000 0.219 0.0001 0.0002 0.0002
Pb 0.0121 0.0023 0.186 0.0100 0.0230 0.0120
马蹄
(n=18)
As 0.028 0.012 0.426 0.011 0.062 0.028
Cd 0.002 0.002 0.650 0.001 0.006 0.002
Cr 0.017 0.003 0.152 0.014 0.023 0.017
Hg 0.002 0.001 0.339 0.001 0.003 0.002
Pb 0.008 0.003 0.408 0.004 0.013 0.007
Table 3  农作物样品重金属元素含量特征值
Fig.3  水稻不同部位重金属平均含量对比
农作物种类 As Cd Cr Hg Pb
水稻籽实 0.003~0.040 0.007~6.879 0~0.002 0.003~0.223 0~0.003
水稻茎叶 0.063~0.420 0.040~4.010 0.010~0.080 0.008~0.030 0.006~0.020
水稻根 0.310~7.500 0.420~4.480 0.320~0.410 0.060~0.210 0.130~0.290
马蹄 0.0025~0.0831 0.0102~0.1242 0.0030~0.0019 0.0224~0.1517 0.0008~0.0027
荔浦芋 0.0009~0.0013 0.0373~2.6347 0.0005~0.0016 0.0071~0.0698 0.0015~0.0074
柑橘 0.0001~0.0023 0~0.0114 0~0.0040 0.0002~0.0027 0.0001~0.0013
Table 4  不同农作物的生物富集系数变化范围
形态 Cd Pb As Hg Cr
可交换态(水溶态+
离子交换态)
23.69 2.04 0.82 0.22 0.24
碳酸盐结合态+腐殖酸
结合态+铁锰结合
态+强有机结合态
63.02 56.12 7.14 38.93 8.31
残渣态 13.27 41.84 92.04 60.85 91.45
Table 5  土壤重金属各组分赋存形态比例
Fig.4  土壤重金属赋存形态分布特征
Fig.5  Cd、Hg、Pb可交换态含量与水稻Cd、Hg、Pb含量对数对比
Fig.6  Cd、Hg、Pb可交换态含量与柑橘Cd、Hg、Pb含量对数对比
Fig.7  Cd、Hg、Pb可交换态含量与马蹄Cd、Hg、Pb含量对数对比
Fig.8  Cd、Hg、Pb可交换态含量与荔浦芋Cd、Hg、Pb含量对数对比
[1] 赵秀芳, 王艺璇, 张永帅, 等. 山东安丘地区土壤—小麦系统重金属等元素间的相互作用[J]. 现代地质, 2020, 4(5):936-944.
[1] Zhao X Z, Wang Y X, Zhang Y S, et al. Geochemical characteristics and environmental assessment of heavy metal elements in agricultural soil of Anqiu area,Shangdong Province[J]. Geophysical and Geochemical Exploration, 2020, 4(5):936-944.
[2] Jose R P V, Martha L L, Mahesh N, et al. The biochemistry of environmental heavy metal uptake by plants:Implications for the food chain[J]. International Journal of Biochemistry and Cell Biology, 2009, 41(8):1665-1677.
[3] 广西荔浦县土地质量地球化学评价报告[R]. 广西壮族自治区地质矿产勘查开发局, 2018.
[3] Geochemical evaluation report of land quality in Lipu County, Guangxi[R]. Bureau of Geology and Mineral Exploration and Development of Guangxi Zhuang Autonomous Region, 2018.
[4] DZ/T 0258—2014多目标区域地球化学调查规范(1∶250 000)[S].
[4] DZ/T 0258—2014 Specification for multi-objective regional geochemical survey(1∶250 000)[S].
[5] DZ/T 0253.1—2014生态地球化学动植物样品分析方法[S].
[5] DZ/T 0253.1—2014 Methods for analysis of animal and plant samples in ecological geochemistry[S].
[6] Vre A M, Davidson C M. Chemical speciation in the environment[M]. Tokyo: Black Well Science, 2001.
[7] DD 2005—03生态地球化学评价样品分析技术要求(试行)[S].
[7] DD 2005—03 Technical requirements for analysis of ecological geochemical evaluation samples (Trial)[S].
[8] 魏复盛, 陈静生, 吴燕玉. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社,1990.
[8] Wei F S, Chen J S, Wu Y Y. Background values of soil elements in China[M]. Beijing: China Environmental Science Press,1990.
[9] Chen H Y, Teng Y G, Lu S J, et al. Contamination features and health risk of soil heavy metals in China[J]. Science of The Total Environment, 2015, 512-513(5):143-153.
[10] 罗慧, 刘秀明, 王世杰, 等. 中国南方喀斯特集中分布区土壤Cd污染特征及来源[J]. 生态学杂志, 2018, 37(5):1538-1544.
[10] Luo H, Liu X M, Wang S J, et al. Pollution characteristics and sources of cadmium in soils of the karst area in South China[J]. Chinese Journal of Ecology, 2018, 37(5):1538-1544.
[11] 唐世琪, 刘秀金, 杨柯, 等. 典型碳酸盐岩区耕地土壤剖面重金属形态迁移转化特征及生态风险评价[J]. 环境科学, 2021, 42(8):1-15.
[11] Tang S Q, Liu X J, Yang K, et al. Migration and transformation characteristics andecological risk evaluation of heavy metal fractions in cultivated land soil profiles at a typical carbonate covering area[J]. Environmental Science, 2021, 42(8):1-15.
[12] 孙子媛, 文雪峰, 吴攀, 等. 喀斯特地区典型风化剖面重金属超标程度及元素迁移特征研究[J]. 地球与环境, 2019, 47(1):50-56.
[12] Sun Z Y, Wen X F, Wu P, et al. Excessivedegrees and migration characteristics of heavy metals in typical weathering profiles in Karst areas[J]. Earth and Environment, 2019, 47(1):50-56.
[13] 李杰, 朱立新, 康志强. 南宁市郊周边农田土壤—农作物系统重金属元素迁移特征及其影响因素[J]. 中国岩溶, 2018, 37(1):43-52.
[13] Li J, Zhu L X, Kang Z Q. Characteristics of transfer and their influencing factors of heavy metals in soil-corp system of peri-urban agricultural soils of Nanning,South China[J]. Carsologica Sinica, 2018, 37(1):43-52.
[14] 赵方杰. 水稻砷的吸收机理及阻控对策[J]. 植物生理学报, 2014, 50(5):569-576.
[14] Zhao F J. Mechanism of arsenic absorption in rice and countermeasures of resistance and control[J]. Journal of Plant Physiology, 2014, 50(5):569-576.
[15] 陈怀满. 土壤中化学物质的行为与环境质量[M]. 北京: 科学出版社,2002:23-45.
[15] Chen H M. Behavior of chemical substances in soil and environmental quality[M]. Beijing: Science Press,2002:23-45.
[16] Rebecca A E, Bradley E S, Suter G W. Uptake of inorganic chemicals from soil by plant leaves:Regressions of field data[J]. Environmental Toxicology and Chemistry, 2001, 20(11):2561-2571.
[17] 关共凑, 徐颂, 黄金国. 重金属在土壤—水稻体系中的分布、变化及迁移规律分析[J]. 生态环境, 2006, 4(2):315-318.
[17] Guan G C, Xu S, Huang J G. Distribution, change and migration of heavy metals in soil rice system[J]. Ecological Environment, 2006, 4(2):315-318.
[18] 马宏宏, 彭敏, 刘飞, 等. 广西典型碳酸盐岩区农田土壤-作物系统重金属生物有效性及迁移富集特征[J]. 环境科学, 2020, 41(1):449-459.
[18] Ma H H, Peng M, Liu F, et al. Bioavailability,translocation,andaccumulationcharacteristic of heavy metals in a soil-crop system from a typical carbonate rock area in Guangxi,China[J]. Environmental Science, 2020, 41(1):449-459.
[19] 王晓娟, 王文斌, 杨龙, 等. 重金属镉(Cd)在植物体内的转运途径及其调控机制[J]. 生态学报, 2015, 35(23):7921-7929.
[19] Wang X J, Wang W B, Yang L, et al. Transport pathways of cadmium (Cd) and its regulatory mechanisms in plant[J]. Acta Ecologica Sinica, 2015, 35(23):7921-7929.
[20] 谢丽萍, 李焘, 蒋翠文, 等. 重金属镉、汞、铜和铅在荸荠体内的累积特性研究[J]. 西南农业学报, 2018, 31(8):1712-1716.
[20] Xie L P, Li T, Jiang C W, et al. Study on accumulation characteristics of heavy metals of cadmium,mercury,copper and lead in water chestnut[J]. Southwest China Journal of Agricultural Sciences, 2018, 31(8):1712-1716.
[21] 邹日. 芋头对重金属的富集规律及对镉、铅胁迫的响应[D]. 烟台: 鲁东大学, 2012.
[21] Zou R. Enrichment of heavy metals in taro and its response to cadmium and lead stress[D]. Yantai: Ludong university, 2012.
[22] 宋波, 田美玲, 庞瑞, 等. 桂北某铅锌矿影响区土壤和柑橘中重金属含量及柑橘产业再优化研究[J]. 生态与农村环境学报, 2019, 35(10):1268-1273.
[22] Song B, Tian M L, Pan R, et al. Concentrations of heavy metal contents in soil and citrus,and citrus industry optimization near a lead and zinc mine in northern Guangxi[J]. Journal of Ecology and Rural Environment, 2019, 35(10):1268-1273.
[23] Baker A J M. Accumulators and excluders-strategies in the response of plants to heavy metals[J]. Journal of Plant Nutrition, 1981, 3(1-4):643-654.
[24] 张德存, 杨军, 等. 湖北省江汉流域经济区农业地质调查总报告[R]. 湖北省地质调查院, 2011.
[24] Zhang D C, Yang J, et al. General report on agricultural geological survey of Jianghan River Basin Economic Zone in Hubei Province[R]. Hubei Geological Survey Institute, 2011.
[25] 唐文忠, 孙柳, 单保庆. 土壤/沉积物中重金属生物有效性和生物可利用性的研究进展[J]. 环境工程学报, 2019, 13(8):1775-1790.
[25] Tang W Z, Sun L, Shan B Q. Research progress on bioavailability and bioavailability of heavy metals in soil/sediment[J]. Journal of Environmental Engineering, 2019, 13(8):1775-1790.
[26] Zhao K L, Liu X M, Zhang W W, et al. Spatial dependence and bioavailability of metal fractions in paddy fields on metal concentrations in rice grain at a regional scale[J]. Journal of Soils and Sediments, 2011, 11(7):1165-1177.
[27] 马宏宏, 彭敏, 郭飞, 等. 广西典型岩溶区农田土壤—作物系统Cd迁移富集影响因素[J]. 环境科学, 2021, 42(3):1514-1522.
[27] Ma H H, Peng M, Guo F, et al. Factors affecting the translocation and accumulation of cadmium in a soil crop system in a typical Karst area of Guangxi Province,China[J]. Environmental Science, 2021, 42(3):1514-1522.
[28] 赵万伏, 宋垠先, 管冬兴, 等. 典型黑色岩系分布区土壤重金属污染与生物有效性研究[J]. 农业环境科学学报, 2018, 37(7):1332-1341.
[28] Zhao W F, Song Y X, Guan D X, et al. Study on soil heavy metal pollution and bioavailability in typical black rock series distribution area[J]. Journal of Agricultural Environmental Science, 2018, 37(7):1332-1341.
[29] Baker A J M. Metal tolerance[J]. New Phytol, 1987, 106(S):93-111.
[1] 周雪妮, 曹亚廷, 计扬. 岷江上游干旱河谷区汶川段风化壳剖面元素地球化学特征[J]. 物探与化探, 2024, 48(3): 597-608.
[2] 谢岿锐, 宋旭锋, 周坤, 周余国, 佘中明, 唐鉴. 滇西南西盟—澜沧地区土壤稀土地球化学异常的发现及找矿意义[J]. 物探与化探, 2024, 48(3): 660-667.
[3] 高鹏利, 任大陆, 李朝辉, 冯志强, 苗洪运, 乔林, 王建武, 杨永亮, 张利明, 李光辉. 基于Boruta算法和GA优化混合地统计模型的土壤有机质空间分布预测[J]. 物探与化探, 2024, 48(3): 747-758.
[4] 韩冰, 黄勇, 李欢, 安永龙. 北京市房山区土壤重金属元素分布、富集特征及来源解析[J]. 物探与化探, 2024, 48(3): 820-833.
[5] 史敬涛, 刘俊建, 张军超, 王江玉龙, 姜禹戈, 王末, 李横飞, 杨文号, 颜翔锦. 浅山区典型小流域土壤重金属影响因素及来源分析[J]. 物探与化探, 2024, 48(3): 834-846.
[6] 余飞, 王锐, 周皎, 张风雷, 蒋玉莲, 张云逸, 朱世林. 典型汞矿区周边耕地土壤重金属来源解析与农作物健康风险评价[J]. 物探与化探, 2024, 48(3): 847-857.
[7] 李瑜, 张雨涵, 官开江, 鲍丽然. 酉阳油茶籽油营养安全品质、油茶含油率特征和立地土壤评价[J]. 物探与化探, 2024, 48(2): 521-526.
[8] 张宏伟, 杨恩林, 焦树林, 王贵云, 杨善进. 七星关区耕地土壤Ge地球化学特征及其与作物的吸收关系[J]. 物探与化探, 2024, 48(2): 534-544.
[9] 肖高强, 赵娟, 陈子万, 宋旭锋, 朱能刚. 基于地质大数据技术对云南土壤重金属地质高背景区的划定[J]. 物探与化探, 2024, 48(1): 216-227.
[10] 蔡柯柯, 赵志强, 蒙丽, 王孝萌, 刘键, 罗仁凤. 重庆市秀山县北部大气干湿沉降重金属元素分布特征及来源分析[J]. 物探与化探, 2024, 48(1): 237-244.
[11] 杨艳, 刘彬, 夏飞强, 陈平峰, 张祥. 皖南典型区耕地土壤重金属富集特征、来源识别及健康风险评估[J]. 物探与化探, 2024, 48(1): 255-263.
[12] 胡庆海, 李俊华, 王学求, 羿明璇, 吴慧, 田密. 河北省永清县农耕区土壤肥力主要指标现状评价[J]. 物探与化探, 2023, 47(6): 1611-1619.
[13] 张亚峰, 姚振, 朱明霞, 马强, 沈骁, 王帅, 贺连珍, 代璐. 青海省海东市三合镇天然富硒土地划定[J]. 物探与化探, 2023, 47(6): 1620-1626.
[14] 王亚栋, 周四春, 刘晓辉, 胡波, 王广西, 徐云甫, 曹红亮, 樊新胜, 韩若浦. 青海茶卡北山锂铍矿勘查区X射线荧光异常特征及找矿意义[J]. 物探与化探, 2023, 47(6): 1635-1642.
[15] 甘雪军, 周四春, 刘晓辉, 王登红, 文春华. 综合地气测量在湘南仁里外围稀有金属矿勘查中的应用[J]. 物探与化探, 2023, 47(6): 1649-1656.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com