Please wait a minute...
E-mail Alert Rss
 
物探与化探  2025, Vol. 49 Issue (6): 1449-1458    DOI: 10.11720/wtyht.2025.0221
  工程地质调查 本期目录 | 过刊浏览 | 高级检索 |
自适应同步压缩变换在隧道探地雷达超前地质预报中的应用
马文德1(), 田仁飞2(), 郑伟3
1.中铁二院工程集团有限责任公司 地勘岩土工程设计研究院, 四川 成都 610032
2.成都理工大学 地球物理学院, 四川 成都 610059
3.中铁二十三局集团 轨道交通工程有限公司, 上海 201314
Application of adaptive synchrosqueezing transform in ground-penetrating radar-based advance geological prediction in tunnels
MA Wen-De1(), TIAN Ren-Fei2(), ZHENG Wei3
1. Institute of Design and Research of Geotechnical Engineering, China Railway Eryuan Engineering Group Co.,Ltd., Chengdu 610032, China
2. College of Geophysics, Chengdu University of Technology, Chengdu 610059, China
3. China Railway 23rd Bureau Group Rail Transit Enging Co., Ltd., Shanghai 201314, China
全文: PDF(4187 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

针对隧道超前地质预报中探地雷达信号非平稳性强、传统时频分析方法分辨率不足的技术问题,本研究提出了一种基于自适应局部最大同步压缩变换(LMSST)的改进方法。该方法通过动态带宽优化算法和局部极值搜索策略,显著提升了传统LMSST的时频分辨率和抗噪性能。理论分析与合成信号测试表明,改进后的算法在交叉调频分量分析中展现出更优异的时频能量聚集特性。在西南某高铁岩溶隧道的实际工程应用中,该方法结合GprMax正演模拟与现场实测数据,成功识别出溶洞等地质异常体,经后续开挖验证,异常边界定位精度小于0.3 m。研究结果表明,自适应LMSST技术有效提高了时频分辨率,为岩溶地区隧道施工安全提供了可靠的技术保障,具有重要的工程应用价值。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马文德
田仁飞
郑伟
关键词 探地雷达同步压缩变换超前地质预报时频分析    
Abstract

Advance geological prediction in tunnels faces technical challenges,including strong non-stationarity of ground-penetrating radar(GPR) signals and insufficient resolution of conventional time-frequency analyses.Hence,this study proposed an improved method based on adaptive local maximum synchrosqueezing transform(LMSST).The proposed method significantly enhanced the time-frequency resolution and noise robustness of traditional LMSST through a dynamic bandwidth optimization algorithm and local extremum search strategies.Theoretical analysis and synthetic signal testing demonstrated the superior time-frequency energy concentration characteristics of the proposed method in analyzing cross-frequency modulation components.Furthermore,the proposed method was applied to the karst tunnel section of a high-speed railway in Southwest China.Combined with the GprMax forward modeling and GPR measurements,the proposed method successfully identified geological anomalies such as karst caves.Subsequent excavation verification confirmed the identification accuracy,with positional errors of anomaly boundaries below 0.3 m.Overall,the results of this study suggest the proposed method's efficiency in enhancing time-frequency resolution and substantial engineering applicability,offering reliable technical support for tunnel construction safety in karst areas.

Key wordsground-penetrating radar(GPR)    synchrosqueezing transform(SST)    advance geological prediction    time-frequency analysis
收稿日期: 2025-06-22      修回日期: 2025-10-22      出版日期: 2025-12-20
ZTFLH:  P631.3  
基金资助:国家自然科学基金项目(41304080);中铁二院基金项目(KSNQ233024)
通讯作者: 田仁飞
引用本文:   
马文德, 田仁飞, 郑伟. 自适应同步压缩变换在隧道探地雷达超前地质预报中的应用[J]. 物探与化探, 2025, 49(6): 1449-1458.
MA Wen-De, TIAN Ren-Fei, ZHENG Wei. Application of adaptive synchrosqueezing transform in ground-penetrating radar-based advance geological prediction in tunnels. Geophysical and Geochemical Exploration, 2025, 49(6): 1449-1458.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2025.0221      或      https://www.wutanyuhuatan.com/CN/Y2025/V49/I6/1449
Fig.1  自适应LMSST算法流程
Fig.2  合成chirp信号及对应的瞬时频率
Fig.3  几种时频方法对比
Fig.4  对应图3中时间在1.0~1.3 s局部放大
Fig.5  加噪声后几种时频方法对比
Fig.6  对应图5中时间在1.0~1.4 s局部放大
Fig.7  探地雷达地质模型及对应正演记录
Fig.8  单道探地雷达的时频分析方法对比
Fig.9  几种时频分析提取的峰值振幅剖面
Fig.10  实测探地雷达剖面
Fig.11  实测单道地质雷达的时频分析方法对比
Fig.12  实测GPR几种时频分析方法峰值振幅剖面
Fig.13  RGB融合显示
Fig.14  现场掌子面开挖
[1] 高树全, 蒋良文, 牟元存, 等. 西南复杂艰险山区铁路隧道超前地质预报技术[J]. 现代隧道技术, 2024, 61(2):52-59.
[1] Gao S Q, Jiang L W, Mou Y C, et al. Advanced geological forecasting techniques for railway tunnels in the complex and treacherous mountainous areas of southwest China[J]. Modern Tunnelling Technology, 2024, 61(2):52-59.
[2] 孙广凯. 贵南高铁岩溶隧道综合超前地质预报方法研究[D]. 成都: 成都理工大学, 2023.
[2] Sun G K. Study on comprehensive advanced geological prediction method of karst tunnel in Guinan high-speed railway[D]. Chengdu: Chengdu University of Technology, 2023.
[3] 毛星. 地质雷达在隧道超前地质预报中的应用[J]. 铁道标准设计, 2014, 57(S1):192-194.
[3] Mao X. Application of ground penetrating radar in advanced geological prediction of tunnel[J]. Railway Standard Design, 2014, 57(S1):192-194.
[4] 郑伟, 田仁飞, 孙广凯. 基于时频多次压缩变换的地质雷达隧道超前预报方法研究[J]. 工程地球物理学报, 2025, 22(1):99-108.
[4] Zheng W, Tian R F, Sun G K. Research on prognosis method of ground penetrating radar tunnel based on time-frequency multisqueezing transformation[J]. Chinese Journal of Engineering Geophysics, 2025, 22(1):99-108.
[5] 余世为, 牛刚, 覃晖, 等. 隧道超前地质预报溶洞探地雷达数据时频分析[J]. 工程勘察, 2023, 51(10):67-72.
[5] Yu S W, Niu G, Qin H, et al. Time and frequency analysis of GPR data for tunnel geological forecast of karst caves[J]. Geotechnical Investigation & Surveying, 2023, 51(10):67-72.
[6] 郑伟, 田仁飞, 高雨含, 等. 最小均值交叉熵的时频峰值滤波在探地雷达信号去噪中的应用[J]. 物探与化探, 2025, 49(2):404-410.
[6] Zheng W, Tian R F, Gao Y H, et al. Application of time-frequency peak filtering with minimum mean cross-entropy in ground penetrating radar signal denoising[J]. Geophysical and Geochemical Exploration, 2025, 49(2):404-410.
[7] Javadi M, Ghasemzadeh H. Wavelet analysis for ground penetrating radar applications:A case study[J]. Journal of Geophysics and Engineering, 2017, 14(5):1189-1202.
[8] Guo S L, Yu M Y, Xu Z W, et al. Study on the attribute characteristics of road cracks detected by ground-penetrating radar[J]. Sensors, 2025, 25(3):595.
[9] Dong H R, Yu G, Jiang Q T. Time-frequency-multisqueezing transform[J]. IEEE Transactions on Industrial Electronics, 2024, 71(4):4151-4161.
[10] Xu J, Ren Q, Shen Z. Ground-penetrating radar time-frequency analysis method based on synchrosqueezing wavelet transformation[J]. Journal of Vibroengineering, 2016, 18(1):315-323.
[11] Yu G, Wang Z H, Zhao P, et al. Local maximum synchrosqueezing transform:An energy-concentrated time-frequency analysis tool[J]. Mechanical Systems and Signal Processing, 2019, 117:537-552.
[12] Li Z, Sun F Y, Gao J H, et al. Multi-synchrosqueezing wavelet transform for time-frequency localization of reservoir characterization in seismic data[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19:7505305.
[13] 景洋, 田仁飞, 郭姝君. 基于LMSST时频分析的频率衰减梯度方法研究[J]. 地球物理学进展, 2024, 39(2):689-703.
[13] Jing Y, Tian R F, Guo S J. Research on frequency attenuation gradient method based on LMSST time frequency analysis[J]. Progress in Geophysics, 2024, 39(2):689-703.
[14] 刘景良, 李宇祖, 苏杰龙, 等. 基于ILMSST识别时变结构非平稳响应信号瞬时频率[J]. 地震工程与工程振动, 2024, 44(2):72-80.
[14] Liu J L, Li Y Z, Su J L, et al. Instantaneous frequency estimation of nonstationary response signals of time-varying structures based on ILMSST[J]. Earthquake Engineering and Engineering Dynamics, 2024, 44(2):72-80.
[15] Zhou Y, Ling B W. Adaptive local maximum synchrosqueezing transform via adaptive window with time-varying function and time- varying searching region[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73:6501019.
[16] Hou Y T, Zhang J Z, Han X C, et al. Local maximum synchrosqueezing adaptive transformation for cross-instantaneous frequencies analysis[J]. Measurement Science and Technology, 2025, 36(1):016123.
[17] Cheng Q, Cui F, Zhang G X, et al. Ground-penetrating radar subsurface attenuation analysis based on a sparsity-promoting time-frequency transform[J]. Geophysics, 2024, 89(6):KS145-KS157.
[18] 邓国文, 王齐仁, 廖建平, 等. 隧道不良地质现象的探地雷达正演模拟与超前探测[J]. 物探与化探, 2015, 39(3):651-656.
[18] Deng G W, Wang Q R, Liao J P, et al. Forward modeling and advanced detection of radar in adverse geological phenomena tunnel[J]. Geophysical and Geochemical Exploration, 2015, 39(3):651-656.
[19] Akinsunmade A, Karczewski J, Mazurkiewicz E, et al. Finite-difference time domain(FDTD) modeling of ground penetrating radar pulse energy for locating burial sites[J]. Acta Geophysica, 2019, 67(6):1945-1953.
[20] Alani A M, Tosti F. GPR applications in structural detailing of a major tunnel using different frequency antenna systems[J]. Construction and Building Materials, 2018, 158:1111-1122.
[21] He T, Peng S P, Cui X Q, et al. An advanced instantaneous frequency method for ground-penetrating radar cavity detection[J]. Journal of Applied Geophysics, 2023, 212:104993.
[22] 刘伟新, 王华, 万琼华, 等. 基于分频RGB融合技术的辫状河三角洲储层构型精细解剖[J]. 地球科学与环境学报, 2022, 44(5):765-774.
[22] Liu W X, Wang H, Wan Q H, et al. Fine analysis of braided river delta reservoir architecture based on frequency division RGB fusion technology[J]. Journal of Earth Sciences and Environment, 2022, 44(5):765-774.
[1] 王彦兵, 金永军, 朱姝. 综合物探方法在某电厂管廊渗漏探测中的应用[J]. 物探与化探, 2025, 49(6): 1467-1472.
[2] 韩嵩, 汤聪, 张旋, 曾鸣, 彭浩天, 吕文正, 屠志慧, 李坷芮, 朱海华. 时频分析技术在蓬莱气区深层高频噪声压制中的应用[J]. 物探与化探, 2025, 49(4): 888-895.
[3] 殷岳萌, 王成浩, 李少龙, 张照, 徐飞. 多层泡棉复合吸波材料在探地雷达天线设计中的应用[J]. 物探与化探, 2025, 49(3): 727-733.
[4] 郑伟, 田仁飞, 高雨含, 武斌. 最小均值交叉熵的时频峰值滤波在探地雷达信号去噪中的应用[J]. 物探与化探, 2025, 49(2): 404-410.
[5] 周鑫, 王洪华, 王欲成, 吴祺铭, 王浩林, 刘洪瑞. 基于共偏移距GPR信号包络和三维速度谱分析的介质电磁波速度估计方法[J]. 物探与化探, 2024, 48(6): 1693-1701.
[6] 杨浩, 邹杰, 程丹丹, 于景兰. 探地雷达在临海市古长城内部结构检测中的应用分析[J]. 物探与化探, 2024, 48(6): 1741-1746.
[7] 袁晓满, 李相文, 张洁, 但光箭, 卢忠沅, 韩重阳, 张磊, 许建洋. 基于改进广义S变换时频分析的“板状”断控油藏油柱高度预测[J]. 物探与化探, 2024, 48(3): 768-776.
[8] 邵泉杰, 孙灵芝. 基于EMD和KL变换的时空联合探地雷达杂波抑制[J]. 物探与化探, 2024, 48(2): 508-513.
[9] 尹达, 辛国亮, 孙学超, 张友源, 张其道. 实时三维探地雷达关键技术的设计与实现[J]. 物探与化探, 2024, 48(1): 194-200.
[10] 席宇何, 王洪华, 王欲成, 吴祺铭. 基于速度移动窗的最小熵法在GPR逆时偏移中的应用[J]. 物探与化探, 2023, 47(5): 1250-1260.
[11] 吴嵩, 宁晓斌, 杨庭伟, 姜洪亮, 卢超波, 苏煜堤. 基于神经网络的探地雷达数据去噪[J]. 物探与化探, 2023, 47(5): 1298-1306.
[12] 曾波, 刘硕, 杨军, 冯德山, 袁忠明, 柳杰, 王珣. 地表起伏对地下管线GPR探测的影响[J]. 物探与化探, 2023, 47(4): 1064-1070.
[13] 张金强. 基于正则化理论的时频分析方法及应用[J]. 物探与化探, 2023, 47(4): 965-974.
[14] 王欲成, 王洪华, 苏鹏锦, 龚俊波, 席宇何. 地下供水管线渗漏的探地雷达模拟探测试验分析[J]. 物探与化探, 2023, 47(3): 794-803.
[15] 徐立, 冯温雅, 姜彦南, 王娇, 朱四新, 覃紫馨, 李沁璘, 张世田. 基于行列方差方法的探地雷达道路数据感兴趣区域自动提取技术[J]. 物探与化探, 2023, 47(3): 804-809.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com