Please wait a minute...
E-mail Alert Rss
 
物探与化探  2025, Vol. 49 Issue (6): 1386-1392    DOI: 10.11720/wtyht.2025.0027
  方法研究信息处理仪器研制 本期目录 | 过刊浏览 | 高级检索 |
高阶动校正速度拾取方法在海域超压分布中的应用
刘苗(), 邢雯淋, 杨雨松, 任静, 赵秀莲, 李振伟, 陈琳枝
中国石油化工股份有限公司 上海海洋油气分公司勘探开发研究院, 上海 200120
Application of the velocity picking method based on high-order normal-moveout correction in predicting overpressure distributions in marine areas
LIU Miao(), XING Wen-Lin, YANG Yu-Song, REN Jing, ZHAO Xiu-Lian, LI Zhen-Wei, CHEN Lin-Zhi
Research Institute of Exploration and Development, Shanghai Offshore Oil & Gas Company,SINOPEC, Shanghai 200120, China
全文: PDF(2854 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

由于超压沉积盆地在海域中普遍存在且分布广泛,通常具备良好的油气成藏条件,对于油气资源评价与勘探部署具有重要的指导意义。速度是超压分布研究的关键参数,随着对预测超压分布精度要求的提高,对地震速度的精度和质量提出了越来越高的要求。海域井网较陆地钻井更为稀疏,因此地震速度的井约束不足,其可靠性需要多方评价,同时经常规速度分析或建模方法获取的地震速度容易存在分辨率不足的问题,因此采用基于非相关参数的高阶动校正为理论基础的高密度双谱速度拾取方法所获得的有利目标区更高分辨率的地震速度体是研究海域盆地超压分布的一种有效手段。本文首先介绍了高阶动校正的方法原理,随后展示了该方法在东海某探区的应用过程。实际应用表明:高阶动校正后的地震速度体可以更好地反映地下高压分布情况,表明该方法在海域超压分布研究中具有良好的应用前景。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘苗
邢雯淋
杨雨松
任静
赵秀莲
李振伟
陈琳枝
关键词 高阶动校正超压分布地震速度储层    
Abstract

Overpressured sedimentary basins are ubiquitous and extensively distributed in marine areas.They typically possess favorable conditions for hydrocarbon accumulation,thus holding considerable significance for guiding hydrocarbon resource evaluation and exploration deployment.Velocity serves as a key parameter for research on overpressure distributions.The increasing demands for higher accuracy in overpressure distribution prediction impose higher requirements on the accuracy and quality of seismic velocities.Compared to well patterns in land areas,the more sparse well patterns in marine areas lead to insufficient well constraints on seismic velocities,requiring a comprehensive reliability evaluation.Additionally,seismic velocities obtained from conventional velocity analysis or modeling often show insufficient resolution.Therefore,this study proposed a high-density bispectral velocity picking method under the theoretical framework of high-order normal-moveout(NMO) based on uncorrelated parameters.The proposed method can obtain higher-resolution seismic velocity volumes for favorable target areas,providing an effective approach to exploring overpressure distributions in marine basins.This study first presented the theoretical principles of high-order NMO correction.Subsequently,it demonstrated the application of the proposed method in a specific exploration area in the East China Sea.The practical application suggests that seismic velocity volumes subjected to high-order NMO correction can effectively reflect subsurface overpressure distributions,showing promising prospects in the research on overpressure distributions in marine areas.

Key wordshigh-order normal-moveout(NMO) correction    overpressure distribution    seismic velocity    reservoir
收稿日期: 2025-02-21      修回日期: 2025-10-10      出版日期: 2025-12-20
ZTFLH:  P631.4  
基金资助:国家自然科学基金面上项目(42574147)
引用本文:   
刘苗, 邢雯淋, 杨雨松, 任静, 赵秀莲, 李振伟, 陈琳枝. 高阶动校正速度拾取方法在海域超压分布中的应用[J]. 物探与化探, 2025, 49(6): 1386-1392.
LIU Miao, XING Wen-Lin, YANG Yu-Song, REN Jing, ZHAO Xiu-Lian, LI Zhen-Wei, CHEN Lin-Zhi. Application of the velocity picking method based on high-order normal-moveout correction in predicting overpressure distributions in marine areas. Geophysical and Geochemical Exploration, 2025, 49(6): 1386-1392.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2025.0027      或      https://www.wutanyuhuatan.com/CN/Y2025/V49/I6/1386
Fig.1  时差参数dtnτ0之间的关系
Fig.2  双谱面板左图(dtn,τ0)和右图(V,Van)之间的差异
Fig.3  高阶动校正指示超压分布处理流程
Fig.4  原始偏移速度体与井速度和高压分布的关系
Fig.5  高阶动校正后速度体与井速度和高压分布的关系
Fig.6  道集高阶动校正前后对比
Fig.7  高阶动校正后速度与原始地震偏移速度和测井速度对比
[1] Hunt J M. Generation and migration of petroleum from abnormally pressured fluid compartments[J]. AAPG Bulletin, 1990, 74(1):1-12.
[2] 马启富, 陈斯忠, 张启明, 等. 超压盆地与油气分布[M]. 北京: 地质出版社, 2000.
[2] Ma Q F, Chen S Z, Zhang Q M, et al. Overpressure basin and oil and gas distribution[M]. Beijing: Geological Publishing House, 2000.
[3] 郝芳. 超压盆地生烃作用动力学与油气成藏机理[M]. 北京: 科学出版社, 2005.
[3] Hao F. Kinetics of hydrocarbon generation and hydrocarbon accumulation mechanism in overpressure basin[M]. Beijing: Science Press, 2005.
[4] 蒋有录, 王鑫, 于倩倩, 等. 渤海湾盆地含油气凹陷压力场特征及与油气富集关系[J]. 石油学报, 2016, 37(11):1361-1369.
[4] Jiang Y L, Wang X, Yu Q Q, et al. Pressure field characteristics of petroliferous depressions and its relationship with hydrocarbon enrichment in Bohai Bay Basin[J]. Acta Petrolei Sinica, 2016, 37(11):1361-1369.
[5] Liu H, Jiang Y L, Song G Q, et al. Overpressure characteristics and effects on hydrocarbon distribution in the Bonan Sag,Bohai Bay Basin,China[J]. Journal of Petroleum Science and Engineering, 2017, 149:811-821.
[6] 杜栩, 郑洪印, 焦秀琼. 异常压力与油气分布[J]. 地学前缘, 1995, 2(4):137-148.
[6] Du X, Zheng H Y, Jiao X Q. Abnormal pressure and hydrocarbon accumulation[J]. Earth Science Frontiers, 1995, 2(4):137-148.
[7] Osborne M J, Swarbrick R E. Mechanisms for generating overpressure in sedimentary basins:A reevaluation:Reply[J]. AAPG Bulletin, 1997, 90(81):1023-1041.
[8] 张启明, 董伟良. 中国含油气盆地中的超压体系[J]. 石油学报, 2000, 21(6):1-11,127.
[8] Zhang Q M, Dong W L. Overpressure system of hydrocarbon-bearing basins in China[J]. Acta Petrolei Sinica, 2000, 21(6):1-11,127.
[9] Baouche R, Sen S, Sadaoui M, et al. Characterization of pore pressure,fracture pressure,shear failure and its implications for drilling,wellbore stability and completion design:A case study from the Takouazet field,Illizi Basin,Algeria[J]. Marine and Petroleum Geology, 2020, 120:104510.
[10] Azadpour M, Shad Manaman N, Kadkhodaie-Ilkhchi A, et al. Pore pressure prediction and modeling using well-logging data in one of the gas fields in south of Iran[J]. Journal of Petroleum Science and Engineering, 2015, 128:15-23.
[11] 张勇刚, 王红平, 王朝锋, 等. 地震资料在海域勘探初期地层压力预测中的应用[J]. 石油地质与工程, 2020, 34(6):8-12,19.
[11] Zhang Y G, Wang H P, Wang C F, et al. Application of seismic data in formation pressure prediction at the initial stage of offshore exploration[J]. Petroleum Geology and Engineering, 2020, 34(6):8-12,19.
[12] 张勇刚. 准噶尔盆地中央坳陷异常压力研究[J]. 新疆石油学院学报, 2003(4):26-29.
[12] Zhang Y G. The abnormal.pressure researches in central depression of Junggar basin[J]. Journal of Xinjiang Petroleum Institute, 2003(4):26-29.
[13] 刘本晶, 梁兴, 侯艳, 等. 叠前道集优化技术在页岩储层预测中的应用[J]. 石油地球物理勘探, 2018, 53(S2):189-196,14-15.
[13] Liu B J, Liang X, Hou Y, et al. Prestack gather conditioning in shale reservoir prediction[J]. Oil Geophysical Prospecting, 2018, 53(S2):189-196,14-15.
[14] Siliqi R, Bousquié N. Anelliptic time processing based on a shifted hyperbola approach[C]// SEG Technical Program Expanded Abstracts 2000.Society of Exploration Geophysicists, 2000:2245-2248.
[15] Siliqi R, Le Meur D, Gamar F, et al. High-density moveout parameter fields V and η.Part one:Simultaneous automatic picking[C]// SEG Technical Program Expanded Abstracts 2003.Society of Exploration Geophysicists, 2003:2088-2091.
[16] Le Meur D, Siliqi R, Gamar F, et al. High density moveout parameter fields V and η.Part two:Simultaneous geostatistical filtering[C]// SEG Technical Program Expanded Abstracts 2003.Society of Exploration Geophysicists, 2003:2092-2095.
[17] 徐翠娥, 郝晓红, 王影. 高密度双谱分析法在各向异性介质速度分析中的初步应用[J]. 海洋石油, 2008, 28(1):1-5.
[17] Xu C E, Hao X H, Wang Y. Application of high density bispectral analyzing method to velocity analysis in anisotropy media[J]. Offshore Oil, 2008, 28(1):1-5.
[18] Byun B S, Corrigan D, Gaiser J E. Anisotropic velocity analysis for lithology discrimination[J]. Geophysics, 1989, 54(12):1564-1574.
[19] Alkhalifah T. Velocity analysis using nonhyperbolic moveout in transversely isotropic media[J]. Geophysics, 1997, 62(6):1839-1854.
[20] Thomsen L. Weak elastic anisotropy[J]. Geophysics, 1986, 51(10):1954-1966.
[1] 周江辉, 刘晓晶, 熊晨皓, 胡鑫, 吴益名. 地震属性与地质力学联合的裂缝建模技术及裂缝有效性分析——以四川盆地涪陵地区侏罗系页岩为例[J]. 物探与化探, 2025, 49(6): 1271-1280.
[2] 依尔繁·阿西木江, 卢志明, 艾尼·买买提, 米尔扎提·迪力木拉提, 多力坤·买买提明. 多属性融合技术预测薄互砂体储层厚度——以哈萨克斯坦W油田为例[J]. 物探与化探, 2025, 49(5): 1110-1117.
[3] 周成刚, 苑恒超, 田军, 王云超, 陈彦奇, 杨秋红. 刻画非均质储层边界的梯度结构张量属性阈值选取策略[J]. 物探与化探, 2025, 49(5): 1118-1125.
[4] 曹绍贺, 黄中群, 袁春艳, 马百征, 王群武, 张奎. 基于麻雀搜索算法的致密砂岩储层参数非线性反演方法[J]. 物探与化探, 2025, 49(5): 1141-1154.
[5] 吴怡, 周长所, 徐国贤, 袁俊亮, 宋晓麟, 曾勇坚, 王群武, 张奎. 基于方位各向异性反演的裂缝型储层预测及流体识别方法[J]. 物探与化探, 2025, 49(5): 1173-1189.
[6] 杨光, 王立贤, 胡佳, 刘智军, 张红杰, 王云鹤, 孙龙, 张旭升, 陈彦虎. 地震波形指示反演方法在叠置薄砂岩预测中的应用——以松辽盆地南部乾安油田高台子油层为例[J]. 物探与化探, 2025, 49(4): 846-854.
[7] 高君, 徐睿, 黄家宸, 苑书金. 水道浊积体特征识别模式及其储层地震预测——以西非下刚果盆地MC块为例[J]. 物探与化探, 2025, 49(4): 919-924.
[8] 汪舒, 王锐, 杨家义, 赵卫升, 廖建. 基于非平稳褶积模型的泊松阻抗及裂缝参数叠前地震各向异性高分辨率直接反演方法[J]. 物探与化探, 2025, 49(3): 642-652.
[9] 张振波, 刘灵, 刘道理, 杨登锋. 番禺4洼古近系储层叠前反演预测技术研究[J]. 物探与化探, 2025, 49(2): 312-320.
[10] 米信武, 周成刚, 田军, 韩耀祖, 李亚楠, 肖冰清. 塔里木盆地轮南地区三叠系非均质薄砂岩储层预测[J]. 物探与化探, 2025, 49(2): 321-329.
[11] 徐风, 司兆伟, 梁忠奎, 田超国, 罗兰, 郭宇航. 基于孔隙结构和多相渗流能力的鄂尔多斯盆地致密砂岩储层品质分类方法研究[J]. 物探与化探, 2025, 49(1): 138-147.
[12] 张永升, 黄超, 刘军, 张永恒, 王兴建, 薛雅娟. 地震信号倒谱分解技术及其在超深层碳酸盐岩储层烃类检测中的应用[J]. 物探与化探, 2024, 48(6): 1618-1625.
[13] 张永升, 张荣, 樊易, 张安家, 李英才. 基于稀疏约束频率域抛物线Radon变换的波场分解[J]. 物探与化探, 2024, 48(6): 1653-1663.
[14] 曹绍贺, 任凤茹, 王霄霄. 东胜气田致密砂岩储层甜点预测关键技术与应用效果[J]. 物探与化探, 2024, 48(4): 954-961.
[15] 刘宇, 王亮, 罗洋, 苏树特, 姚蔺芳, 刘瑜超, 周纯润, 胡梦蝶. 川中地区茅口组碳酸盐岩储层类型测井识别[J]. 物探与化探, 2024, 48(3): 629-639.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com