Please wait a minute...
E-mail Alert Rss
 
物探与化探  2025, Vol. 49 Issue (6): 1372-1379    DOI: 10.11720/wtyht.2025.0138
  方法研究信息处理仪器研制 本期目录 | 过刊浏览 | 高级检索 |
面向高陡构造的棱柱波地震干涉成像方法
罗宇晨1(), 罗章清1, 刘胜1, 欧成华2, 王泽宇2, 刘畅3
1.中石化石油工程地球物理有限公司 南方分公司, 四川 成都 610213
2.西南石油大学 石油与天然气工程学院, 四川 成都 610500
3.中国石化胜利油田 物探研究院, 山东 东营 257000
An imaging method integrating prismatic waves and seismic interferometry for high-steep structures
LUO Yu-Chen1(), LUO Zhang-Qing1, LIU Sheng1, OU Cheng-Hua2, WANG Ze-Yu2, LIU Chang3
1. South Branch, Sinopec Geophysical Corporation, Chengdu 610213, China
2. Petroleum Engineering School, Southwest Petroleum University, Chengdu 610500, China
3. Geophysical Research Institute, Shengli Oilfield Company,SINOPEC, Dongying 257000, China
全文: PDF(3991 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

常规偏移成像由于只考虑一次反射波,因此难以对地下高陡地质体进行有效成像。棱柱波相较于一次反射波多传播一段路径,因此可以对高陡构造进行成像,但由于地震波多传播一段路径,因此计算量会增加。地震干涉可以将地表观测系统下移到地下人为选取的校准面,因此后期的计算只需要对地下校准面以下的模型进行计算,可以提高计算效率。本文融合棱柱波与地震干涉技术,提出新型成像方法;以棱柱波方程替代声波方程,通过地表与地下基准面数据互相关生成虚拟记录,结合逆时偏移成像。采用水平层状、L型和盐丘模型验证;水平模型成像与全局基准面下一致;L模型陡倾构造还原优于常规方法;盐丘模型盐下分辨率提升。由于下沉了观测系统,因此在后期的成像过程中,计算的模型纵向深度减少,炮记录时间也减少了,因此采用本文偏移成像方法的计算成本是常规全模型RTM的26.6%。本文提出的方法通过观测系统下移和多次波利用,兼顾精度与效率,突破传统干涉限制,为高陡构造勘探提供新方案;模型简化与实际非均质性存在差异,计算成本需进一步优化。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
罗宇晨
罗章清
刘胜
欧成华
王泽宇
刘畅
关键词 地震干涉棱柱波互相关逆时偏移高陡构造    
Abstract

Conventional migration imaging,which only considers primary reflected waves,fails to effectively image subsurface high-steep geobodies.Compared to primary reflected waves,prismatic waves travel an additional path, enabling the imaging of high-steep structures.However,the additional travel path increases the computational load.Seismic interferometry can shift the surface observation system downward to an artificially selected subsurface calibration plane.Consequently,subsequent calculations only need to be performed on the model below the subsurface calibration plane,there by improving computational efficiency.Hence,this study proposed a novel imaging method integrating prismatic waves and seismic interferometry.In the proposed method,the acoustic wave equation was replaced by the prismatic wave equation.Virtual records were generated through cross-correlations between data from the surface and subsurface reference planes.These records were combined with reverse time migration(RTM) for imaging.The proposed method was verified using the horizontal layered, L-shaped, and salt dome models.Specifically,the horizontal layered model exhibited consistent imaging results with those below the global reference plane;the L-shaped model outperformed conventional methods in imaging steep structures;the salt dome model displayed enhanced pre-salt imaging resolution.Due to the downward shift of the surface observation system,the following imaging process entailed a reduced vertical depth and a shorter shot record time.The proposed method reduced the computational cost to 26.6% of that using the conventional RTM imaging.Overall,through the downward shift of the observation system and the utilization of multiples,the proposed method achieved both satisfactory accuracy and efficiency,overcoming the limitations of traditional interferometry and providing a novel solution for exploring high-steep structures.Notably,there still exist discrepancies between the simplified models and the actual heterogeneity,requiring further optimization of the computational cost.

Key wordsseismic interferometry    prism waves    cross-correlation    reverse time migration(RTM)    high-steep structures
收稿日期: 2025-04-24      修回日期: 2025-08-14      出版日期: 2025-12-20
ZTFLH:  P631.4  
基金资助:四川科教联合基金重点项目“页岩储层天然裂缝跨视域表征与二氧化碳协同压驱控制机理研究”(2024NSFSC1960)
引用本文:   
罗宇晨, 罗章清, 刘胜, 欧成华, 王泽宇, 刘畅. 面向高陡构造的棱柱波地震干涉成像方法[J]. 物探与化探, 2025, 49(6): 1372-1379.
LUO Yu-Chen, LUO Zhang-Qing, LIU Sheng, OU Cheng-Hua, WANG Ze-Yu, LIU Chang. An imaging method integrating prismatic waves and seismic interferometry for high-steep structures. Geophysical and Geochemical Exploration, 2025, 49(6): 1372-1379.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2025.0138      或      https://www.wutanyuhuatan.com/CN/Y2025/V49/I6/1372
Fig.1  基于互相关原理的双重格林函数干涉方法示意
Fig.2  基准面下移中间步骤
Fig.3  算法流程
Fig.4  两层水平模型
Fig.5  模型下的输入炮记录
Fig.6  两层水平模型的干涉效果炮记录对比
Fig.7  两层水平模型的干涉效果逆时偏移对比
Fig.8  L模型
Fig.9  L模型的单炮记录
Fig.10  L模型的成像效果对比
Fig.11  盐丘模型
Fig.12  盐丘模型的输入炮记录
Fig.13  盐丘模型的干涉效果炮记录对比
Fig.14  盐丘模型的干涉效果逆时偏移对比
Fig.15  常规干涉成像效果
计算时间 棱柱波干涉 常规干涉 常规RTM
s 997 662 3752
Table 1  计算成本对比
Fig.16  我国某东部工区实际资料
[1] Biondi B L, Clapp R G, Prucha M, et al. 3D prestack wave-equation imaging-a rapidly evolving technology[C]//Florence: 64th EAGE Conference & Exhibition, European Association of Geoscientists & Engineers, 2002:cp-5-00159.
[2] Baysal E, Kosloff D D, Sherwood J W C. Reverse time migration[J]. Geophysics, 1983, 48(11):1514-1524.
[3] Loewenthal D, Mufti I R. Reversed time migration in spatial frequency domain[J]. Geophysics, 1983, 48(5):627-635.
[4] McMechan G A. Migration by extrapolation of time-dependent boundary VALUES[J]. Geophysical Prospecting, 1983, 31(3):413-420.
[5] Whitmore N D. Iterative depth migration by backward time propagation[C]// SEG Technical Program Expanded Abstracts 1983, Society of Exploration Geophysicists, 1983:382-385.
[6] Esmersoy C, Oristaglio M. Reverse-time wave-field extrapolation,imaging,and inversion[J]. Geophysics, 1988, 53(7):920-931.
[7] Beylkin G. Imaging of discontinuities in the inverse scattering problem by inversion of a causal generalized Radon transform[J]. Journal of Mathematical Physics, 1985, 26(1):99-108.
[8] Hill N R. Gaussian beam migration[J]. Geophysics, 1990, 55(11):1416-1428.
[9] Gray S H, Bleistein N. True-amplitude Gaussian-beam migration[J]. Geophysics, 2009, 74(2):S11-S23.
[10] Claerbout J F. Imaging the Earth’s Interior[M]. Palo Alto: Blackwell Scientific Publishers, 1985.
[11] Chang W F, McMechan G A. Reverse-time migration of offset vertical seismic profiling data using the excitation-time imaging condition[J]. Geophysics, 1986, 51(1):67-84.
[12] Chang W F, McMechan G A. 3D acoustic prestack reverse-time migration[J]. Geophysical Prospecting, 1990, 38(7):737-755.
[13] Berryhill J R. Wave-equation datuming[J]. Geophysics, 1979, 44(8):1329-1344.
[14] Berryhill J R. Wave equation datuming before stack[J]. Geophysics, 1984, 49(11):2064-2067.
[15] Wapenaar C P A, Cox H L H, Berkhout A J. Elastic redatuming of multicomponent seismic data[J]. Geophysical Prospecting, 1992, 40(4):465-482.
[16] Barrera P D F, Schleicher J, Neut J. Limitations of correlation-based redatuming methods[J]. Journal of Geophysics and Engineering, 2017, 14(6):1582-1598.
[17] Claerbout J F. Synthesis of a layered medium from its acoustic transmission response[J]. Geophysics, 1968, 33(2):264-269.
[18] Xiao X, Schuster G. Redatuming CDP data below salt with VSP Green's function[C]// New Orleans: SEG Annual International Meeting, Society of Exploration Geophysicists, 2006:3511-3515.
[19] Schuster G T, Zhou M. A theoretical overview of model-based and correlation-based redatuming methods[J]. Geophysics, 2006, 71(4):SI103-SI110.
[20] Dong S, Xiao X, Luo Y, et al. 3D target-oriented reverse-time datuming[C]// San Antonio: SEG Technical Program Expanded Abstracts, Society of Exploration Geophysicists, 2007:2442-2445.
[21] Luo Y, Schuster G T. Bottom-up target-oriented reverse-time datuming[C]// Beijing: CPS/SEG International Geophysical Conference, CPS/SEG, 2004:482-485.
[22] Lu R, Willis M, Campman X, et al. Redatuming through a salt canopy and target-oriented salt-flank imaging[J]. Geophysics, 2008, 73(3):S63-S71.
[23] Vander N J, Thorbecke J, Mehta K, et al. Controlled-source interferometric redatuming by crosscorrelation and multidimensional deconvolution in elastic media[J]. Geophysics, 2011, 76(4):SA63-SA76.
[24] Curtis A, Halliday D. Source-receiver wave field interferometry[J]. Physical Review E, 2010, 81(4):046601.
[25] Poliannikov O V. Retrieving reflections by source-receiver wavefield interferometry[J]. Geophysics, 2011, 76(1):SA1-SA8.
[26] Ruigrok E, Wapenaar K. Global-phase seismic interferometry unveils P-wave reflectivity below the Himalayas and Tibet[J]. Geophysical Research Letters, 2012, 39(11):L11301.
[27] Tao Y, Sen M K. On a plane-wave based crosscorrelation-type seismic interferometry[J]. Geophysics, 2013, 78(4):Q35-Q44.
[28] 牟新刚, 周奇, 周晓, 等. 一种高频拓展的改进地震干涉算法研究[J]. 仪器仪表学报, 2021, 42(4):59-66.
[28] Mou X G, Zhou Q, Zhou X, et al. Research on an improved seismic interferometry algorithm with high-frequency extension[J]. Chinese Journal of Scientific Instrument, 2021, 42(4):59-66.
[29] 王一臣. 基于稳相理论及S变换的地震干涉法研究[D]. 北京: 中国地质大学(北京), 2021.
[29] Wang Y C. Research on seismic interferometry based on stationary phase theory and S-transform[D]. Beijing: China University of Geosciences(Beijing), 2021.
[1] 张宏, 姜大建, 刘鑫, 牛赟博, 李振春, 徐凯. 地震干涉法分阶多次波逆时偏移[J]. 物探与化探, 2025, 49(4): 855-868.
[2] 刁瑞, 葛大明, 孔庆丰, 燕新跃, 韩睿, 谷丙洛. 基于地震干涉的复杂构造局部成像[J]. 物探与化探, 2025, 49(4): 869-877.
[3] 赵国勇, 张剑, 刘畅, 任一, 邢伯申, 李自正, 曲英铭. 面向盐下构造的染色逆时偏移成像[J]. 物探与化探, 2024, 48(4): 1086-1093.
[4] 席宇何, 王洪华, 王欲成, 吴祺铭. 基于速度移动窗的最小熵法在GPR逆时偏移中的应用[J]. 物探与化探, 2023, 47(5): 1250-1260.
[5] 徐雷良, 赵国勇, 张剑, 钟天淼, 谷佳莹, 游剑, 曲英铭. 绕射波与一次波联合黏声最小二乘逆时偏移[J]. 物探与化探, 2023, 47(1): 91-98.
[6] 王霁川, 谷丙洛, 李振春. 井中地震黏声逆时偏移的井型影响分析[J]. 物探与化探, 2022, 46(5): 1196-1206.
[7] 杨宏伟, 王霁川, 孔庆丰, 谷丙洛, 孙卫国, 李振春. 井中地震粘声逆时偏移成像影响因素分析[J]. 物探与化探, 2022, 46(4): 877-886.
[8] 段莹, 张高成, 谭雅丽. 泌阳凹陷高陡构造带地震成像[J]. 物探与化探, 2021, 45(4): 981-989.
[9] 刘炜, 王彦春, 毕臣臣, 徐仲博. 基于优化交错网格有限差分法的VSP逆时偏移[J]. 物探与化探, 2020, 44(6): 1368-1380.
[10] 陈紫静, 陈清礼. 瞬变电磁的逆时偏移成像方法[J]. 物探与化探, 2020, 44(6): 1415-1419.
[11] 黄华, 李忠生, 郑革辉, 吴大林, 王中圣, 袁子恒. 震源车压制城市噪声机理及效果分析[J]. 物探与化探, 2020, 44(4): 803-809.
[12] 马振, 孙成禹, 彭鹏鹏, 姚振岸. 速度误差和地震噪声对最小二乘逆时偏移的影响分析[J]. 物探与化探, 2020, 44(2): 329-338.
[13] 龚俊波, 王洪华, 王敏玲, 罗泽明. 逆时偏移在探地雷达数据处理中的应用[J]. 物探与化探, 2019, 43(4): 835-842.
[14] 宋宗平, 陈可洋, 杨微, 李来林, 吴清岭, 范兴才. 地震波逆时偏移中两种成像条件应用效果对比[J]. 物探与化探, 2019, 43(3): 618-625.
[15] 郭旭, 黄建平, 李振春, 黄金强, 朱峰. 基于行波分离的VTI介质逆时偏移[J]. 物探与化探, 2019, 43(1): 100-109.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com