Please wait a minute...
E-mail Alert Rss
 
物探与化探  2023, Vol. 47 Issue (1): 91-98    DOI: 10.11720/wtyht.2023.2636
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
绕射波与一次波联合黏声最小二乘逆时偏移
徐雷良1, 赵国勇1, 张剑2, 钟天淼3, 谷佳莹3, 游剑3, 曲英铭3()
1.中石化石油工程地球物理有限公司 科技研发中心,江苏 南京 211100
2.中石油化工股份有限公司 石油工程地球物理公司胜利分公司,山东 东营 257100
3.中国石油大学(华东) 地球科学与技术学院,山东 青岛 266580
Joint Q-compensated least-squares reverse time migration using primary and diffracted waves
XU Lei-Liang1, ZHAO Guo-Yong1, ZHANG Jian2, ZHONG Tian-Miao3, GU Jia-Ying3, YOU Jian3, QU Ying-Ming3()
1. Science and Technology Research and Development Center,Sinopec Petroleum Engineering Geophysical Limited Corporation,Nanjing 211100,China
2. Shengli Branch Company,Sinopec Petroleum Engineering Geophysical Limited Corporation,Dongying 257100,China
3. School of Geosciences,China University of Petroleum (East China),Qingdao 266580,China
全文: PDF(4481 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

由于照明不足,小尺度断层和孔洞的成像是一个难题,地下衰减导致地震波振幅损失和相位畸变,在成像过程中忽略这种衰减会造成偏移振幅模糊。基于黏声最小二乘逆时偏移(QLSRTM)能够优化小尺度构造的成像,但这需要大量的迭代和计算成本。为了提高小尺度构造的成像效果,提出了一种充分使用绕射波的面向地质目标的的黏声LSRTM(J-QLSRTM)。在该方法中,构建了新的目标函数和梯度公式,并基于反演理论和伴随理论,推导了一次波和绕射波的Q补偿波场传播算子、Q补偿伴随算子和Q衰减反偏移算子。数值实例证明了J-QLSRTM比传统QLSRTM和声波J-LSRTM更有优势。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐雷良
赵国勇
张剑
钟天淼
谷佳莹
游剑
曲英铭
关键词 最小二乘逆时偏移黏声绕射波    
Abstract

Poor illumination poses great challenges to the imaging of small-scale faults and pores.Subsurface attenuation leads to amplitude loss and phase distortion of seismic waves,and ignoring such attenuation during imaging will blur migration amplitudes.The Q-compensated least-squares reverse time migration (QLSRTM) can improve the imaging of these small-scale structures,but it requires a huge amount of iterations and computational cost.To improve the imaging effect of these small-scale structures,this study proposed a geological-target-oriented joint QLSRTM (J-QLSRTM) that fully utilizes diffracted waves.In this method,a new objective function and gradient formula was constructed.Moreover,the Q-compensated wavefield propagation operators,Q-compensated adjoint operators,and Q-attenuated demigration operators were derived for both primary and diffracted waves based on the inversion and adjoint theories.The numerical examples verified that the proposed J-QLSRTM is superior to the conventional QLSRTM and the acoustic J-LSRTM.

Key wordsleast-squares reverse time migration    viscoacoustic    diffracted waves
收稿日期: 2021-12-11      修回日期: 2022-05-27      出版日期: 2023-02-20
ZTFLH:  P631.4  
基金资助:国家自然科学基金(42174138);国家自然科学基金(42074133);中国石化科技项目(P22165)
通讯作者: 曲英铭(1990⁃),男,博士,中国石油大学(华东)副教授,博士生导师,主要从事地震波传播、成像与反演等方面的研究工作。Email:quyingming@upc.edu.cn
作者简介: 徐雷良(1983-),男,高级工程师,主要从事地震资料采集与处理技术研究工作。Email:sl-xull.osgc@sinopec.com
引用本文:   
徐雷良, 赵国勇, 张剑, 钟天淼, 谷佳莹, 游剑, 曲英铭. 绕射波与一次波联合黏声最小二乘逆时偏移[J]. 物探与化探, 2023, 47(1): 91-98.
XU Lei-Liang, ZHAO Guo-Yong, ZHANG Jian, ZHONG Tian-Miao, GU Jia-Ying, YOU Jian, QU Ying-Ming. Joint Q-compensated least-squares reverse time migration using primary and diffracted waves. Geophysical and Geochemical Exploration, 2023, 47(1): 91-98.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2023.2636      或      https://www.wutanyuhuatan.com/CN/Y2023/V47/I1/91
Fig. 1  三层衰减模型与小尺度孔洞
Fig.2  黏声介质(a)和声波介质(b)的炮记录以及从衰减炮记录中分离出的绕射波的炮记录(c)和分离出的反射波(d)
Fig.3  600 ms波场补偿试验
Fig. 4  衰减Sigsbee2B速度模型(a)和Q模型(b)
Fig. 5  炮记录(a)、分离的绕射波炮记录(b)和分离的一次波炮记录(c)
Fig. 6  QRTM (a)和无补偿RTM (b)进行拉普拉斯滤波后的Sigsbee2B模型图像
Fig.7  J-QLSRTM(a)、常规的一次波QLSRTM(b)和棱柱波QLSRTM(c)迭代30次后的成像结果
Fig.8  反射系数(a)和使用声波数据的声波LSRTM图像(b)
Fig. 9  4 500 m处的波数谱
Fig.10  存在明显误差的速度场(a)和Q场(b)
Fig.11  采用图10a速度场(a)和图10bQ场(b)得到的J-QLSRTM成像结果
[1] Schuster G, Wang X, Huang Y, et al. Theory of multisource crosstalk reduction by phase-encoded statics[J]. Geophysical Journal International, 2011, 184(3):1289-1303.
doi: 10.1111/j.1365-246X.2010.04906.x
[2] Kozlov E, Barasky N, Korolev E. Imaging scattering objects masked by specular reflections[J]. Society of Exploration Geophsicists, 2004, 23(1):1131-1134.
[3] Moser T J, Howard C B. Diffraction imaging in depth[J]. Geophysics, 2008, 56(5):641-656.
[4] Koren Z, Ravve I. Specular/diffraction imaging by full azimuth subsurface angle domain decomposition[C]// SEG Technical Program Expanded Abstracts,Society of Exploration Geophysicists, 2010:3268-3272.
[5] Berkovitch A, Belfer I, Hassin Y, et al. Diffraction Imaging by Multifocusing[J]. Geophysics, 2009, 74(6):75-81.
[6] 王楠, 程玖兵, 马在田. 表驱Kirchhoff叠前时间偏移角度域成像方法[J]. 石油物探, 2008, 47(4):328-333.
[6] Wang N, Chen J B, Ma Z T. Surface drive Kirchhoff prestack time migration angle-domain imaging method[J]. Geophysical Prospecting for Petroleum, 2008, 47(4):328-333.
[7] Landa E, Fomel S, Reshef M. Separation,imaging,and velocity analysis of seismic diffractions using migrated dip-angle gathers[J]. Society of Exploration Geophysicists, 2008, 27(1):2176-2180.
[8] Bai Y Y, Xiao S, Tang M C, et al. Wide-angle scanning phased array with pattern reconfigurable elements[J]. IEEE Transactions on Antennas and Propagation, 2011, 59(11):4071-4076.
doi: 10.1109/TAP.2011.2164176
[9] Reshef M. Velocity analysis in the dip-angle domain[C]// Conference Proceedings,69th EAGE Conference and Exhibition incorporating SPE EUROPEC, 2007.
[10] Reshef M, Landa E. Post-stack velocity analysis in the dip-angle domain using diffractions[J]. Geophysical Prospecting, 2009, 57(5):811-821.
doi: 10.1111/j.1365-2478.2008.00773.x
[11] 刘定进, 印兴耀. 共炮检距道集波动方程保幅叠前深度偏移方法[J]. 地球物理学进展, 2007, 22(2):492-501.
[11] Liu D J, Ying X Y. The method of wave equation preserved amplitude prestack depth migration for common offset gathers[J]. Progress in Geophysics, 2007, 22(2):492-501.
[12] Kanasewich R E. Imaging discontinuities on seismic sections[J]. Geophysics, 1988, 53(3):334-346.
doi: 10.1190/1.1442467
[13] Nowak E, Imhof M G. Diffractor Localization Via Weighted Radon Transforms[C]// SEG Expanded Abstracts, 2004:2108-2111.
[14] Khaidukov V, Landa E, Moser T J. Diffraction imaging by focusing-defocusing:An outlook on seismic superresolution[J]. Geophysics, 2004, 69(6):1478-1490.
doi: 10.1190/1.1836821
[15] Taner M, Fomel S, Landa E. Separation and imaging of seismic diffractions using Plane-Wave decomposition[C]// SEG Technical Program Expanded Abstracts,Society of Exploration Geophysicists, 2006:2401-2406.
[16] Papziner U, Nick K P. Automatic detection of hyperbolas in georadargrams by slant-stack processing and migration[J]. First Break, 1998, 16(6):219-223.
doi: 10.1046/j.1365-2397.1998.00691.x
[17] Bansal R, Imhof M G. Diffraction enhancement in prestack seismic data[J]. Geophysics, 2005, 70(3):73-79.
[18] Aki K, Richards P G. Quantitative seismology(2nd ed.)[M]. University Science Books, 2002.
[19] Carcione J M. Wave fields in real media:Theory and numerical simulation of wave propagation in anisotropic,anelastic,porous and electromagnetic media(2nd ed.)[M]. Elsevier, 2007.
[20] 赵力, 魏建新, 狄帮让. 反Q滤波法对近地表吸收衰减补偿的效果分析[C]// 中国地球物理学会第二十九届年会论文集, 2013.
[20] Zhao L, Wei J X, Di B R. Analysis of the effect of inverse Q filtering method on near-surface absorption attenuation compensation[C]// Proceedings of the 29th Annual Meeting of Chinese Geophysical Society, 2013.
[21] 施羽. 地层吸收衰减与反Q滤波方法及研究应用[D]. 成都: 成都理工大学, 2018.
[21] Shi Y. Layer Q absorption attenuation and inverse Q filtering methods research and application[D]. Chengdu: Chengdu University of Technology, 2018.
[22] Zhang X, Han L, Zhang F, et al. An inverse Q-filter algorithm based on stable wavefeild continuation[J]. Applied Geophysicis, 2007, 4(4):263-270.
[23] Xie Y, Xin K, Sun J, et al. 3D prestack depth migration with compensation for frequency dependent absorption and dispersion[C]// Expanded Abstracts of 79th Annual Internat SEG Mtg., 2009, 42:2919-2922.
[24] Zhang J, Wu J, Li X. Compensation for absorption and dispersion in prestack migration:An effective Q approach[J]. Geophysics, 2013: 78(1):S1-S14.
doi: 10.1190/geo2012-0128.1
[25] Qu Y, Li J. Q-compensated reverse time migration in viscoacoustic media including surface topography[J]. Geophysics, 2019, 84(4):S201-S217.
doi: 10.1190/geo2018-0313.1
[26] Sun J, Fomel S, Zhu T, et al. Q-compensated least-squares reverse time migration using low-rank one-step wave extrapolation[J]. Geophysics, 2016, 81(4):S271-S279.
doi: 10.1190/geo2015-0520.1
[27] Qu Y, Huang J, Li Z, et al. Attenuation compensation in anisotropic least-squares reverse time migration[J]. Geophysics, 2017, 82(6):S411 -S423.
[28] Chen Y, Dutta G, Dai W, et al. Q-least-squares reverse time migration with viscoacoustic deblurring filters[J]. Geophysics, 2017, 82(6):S425-S438.
doi: 10.1190/geo2016-0585.1
[29] 陈鑫, 王德利, 孟阁阁, 等. 基于平面波解构滤波的速度无关动校正及速度分析方法[J]. 世界地质, 2014, 33(4):895-903.
[29] Chen X, Wang D L, Meng G G, et al. Velocity-independent NMO correction using plane-wave destruction filters and velocity analysis method[J]. Global Geology, 2014, 33(4):895-903.
[30] Kuzuoglu M, Mittra R. Frequency dependence of the constitutive parameters of causal perfectly matched anisotropic absorbers[C]// IEEE Microwave and Guided Wave Letters, 1996, 12:447-449.
[31] Levander A. Fourth-order finite-difference P-SV seismograms[J]. Geophysics, 1988, 53:1425-1436.
doi: 10.1190/1.1442422
[1] 肖世鹏, 熊高君, 袁梦雨, 毛明秋, 王胜艺, 韦增涛. 黏声波高阶傅里叶有限差分法参数优化成像[J]. 物探与化探, 2022, 46(5): 1207-1213.
[2] 马振, 孙成禹, 彭鹏鹏, 姚振岸. 速度误差和地震噪声对最小二乘逆时偏移的影响分析[J]. 物探与化探, 2020, 44(2): 329-338.
[3] 徐军, 刘斌, 赵庆献. 基于SVD的小尺度地质体地震绕射波成像[J]. 物探与化探, 2019, 43(5): 1074-1082.
[4] 李金丽, 曲英铭, 刘建勋, 李振春, 王凯, 于博. 三维黏声最小二乘逆时偏移方法模型研究[J]. 物探与化探, 2018, 42(5): 1013-1025.
[5] 李金丽, 曲英铭, 刘建勋, 岳航羽, 李培, 陈德元. 天然气水合物储层弹性波最小二乘逆时偏移研究[J]. 物探与化探, 2017, 41(6): 1050-1059.
[6] 王连坤, 方伍宝, 段心标, 胡光辉, 李振春, 万弘. 基于互相关误差泛函的最小二乘逆时偏移方法[J]. 物探与化探, 2016, 40(5): 980-985.
[7] 徐德奎, 何玉, 郑江峰. 基于绕射波的断层识别方法应用[J]. 物探与化探, 2016, 40(4): 783-787.
[8] 邓文志, 李振春, 王延光, 孙小东. 基于稳定逆时传播算子的黏声介质最小二乘逆时偏移[J]. 物探与化探, 2015, 39(4): 791-796.
[9] 杨双安, 常锁亮. 煤田陷落柱的超声模拟分析[J]. 物探与化探, 2005, 29(4): 355-358.
[10] 邓业灿, 李毅臻, 鲁传恒, 黄汉平. 桩底持力层与桩身倾斜度测试方法技术研究[J]. 物探与化探, 2002, 26(3): 240-246.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com