Please wait a minute...
E-mail Alert Rss
 
物探与化探  2025, Vol. 49 Issue (4): 869-877    DOI: 10.11720/wtyht.2025.1272
  方法研究信息处理仪器研制 本期目录 | 过刊浏览 | 高级检索 |
基于地震干涉的复杂构造局部成像
刁瑞1(), 葛大明1, 孔庆丰1, 燕新跃2, 韩睿2, 谷丙洛2
1.中国石油化工股份有限公司 胜利油田分公司物探研究院, 山东 东营 257022
2.中国石油大学(华东) 地球科学与技术学院, 山东 青岛 266580
Local imaging of complex structures based on seismic interferometry
DIAO Rui1(), GE Da-Ming1, KONG Qing-Feng1, YAN Xin-Yue2, HAN Rui2, GU Bing-Luo2
1. Geophysical Research Institute, Shengli Oilfield Branch Company,SINOPEC, Dongying 257022, China
2. School of Geosciences, China University of Petroleum(East China), Qingdao 266580, China
全文: PDF(7041 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

随着我国油气勘探的不断深入,如今地震勘探成像的重点从大尺度整体成像逐渐转向小尺度复杂构造体成像。受地震波传播机理的限制,小尺度、高陡等复杂构造存在界面反射信息拾取困难、反射能量弱等问题,常规地面地震勘探成像方式难以实现精确成像。通过地震干涉法能够使虚拟观测系统更靠近目标区域,提高对复杂界面的成像分辨率,实现面向目标构造的高精度成像。笔者对地震干涉原理进行理论推导,对小尺度模型进行正演模拟,将生成的干涉道集与实际参考道集进行对比,验证了干涉方法的正确性。将该方法应用到BP气云模型和高陡构造—薄互层模型进行数值试算,并将成像结果与常规RTM成像结果进行对比,证明了地震干涉法可以实现对深层复杂构造的高精度成像。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刁瑞
葛大明
孔庆丰
燕新跃
韩睿
谷丙洛
关键词 复杂构造波场重构地震干涉成像    
Abstract

With the continuous advancement of oil and gas exploration in China,the focus of seismic imaging has gradually shifted from large-scale overall imaging to small-scale complex structure imaging.Due to the inherent limitations of seismic wave propagation,small-scale and highly steep complex structures pose challenges such as difficulty in capturing interface reflection information and weak reflection energy.Consequently,conventional surface seismic imaging methods struggle to achieve accurate imaging of these targets.The seismic interferometry method can render the virtual observation system closer to the target area,improving the imaging resolution of complex interfaces, and achieving high-precision target-oriented imaging.This study conducted a theoretical derivation of the seismic interferometry mechanism and forward modeling of small-scale models.By comparing the generated interferometric gathers with actual reference gathers,this study verified the accuracy of the seismic interferometry method.Subsequently,this study applied the method to the backpropagation(BP) gas cloud model and a highly-steep structure- thin interbed model for numerical tests.The imaging results were finally compared with conventional reverse time migration(RTM) results,demonstrating that the seismic interferometry method enables high-precision imaging of deep complex structures.

Key wordscomplex structure    wavefield reconstruction    imaging based on seismic interferometry
收稿日期: 2024-07-10      修回日期: 2025-06-10      出版日期: 2025-08-20
ZTFLH:  P631.4  
基金资助:国家自然科学基金面上项目(42374151);山东省泰山产业领军人才项目“新一代井地立体地震技术研究及产业化应用”
作者简介: 刁瑞(1985-),男,博士,研究员,主要从事油气地球物理方法和油藏地球物理监测技术研究工作。Email:diaorui1985@163.com
引用本文:   
刁瑞, 葛大明, 孔庆丰, 燕新跃, 韩睿, 谷丙洛. 基于地震干涉的复杂构造局部成像[J]. 物探与化探, 2025, 49(4): 869-877.
DIAO Rui, GE Da-Ming, KONG Qing-Feng, YAN Xin-Yue, HAN Rui, GU Bing-Luo. Local imaging of complex structures based on seismic interferometry. Geophysical and Geochemical Exploration, 2025, 49(4): 869-877.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2025.1272      或      https://www.wutanyuhuatan.com/CN/Y2025/V49/I4/869
Fig.1  Helmholtz-Kirchhoff积分原理示意
Fig.2  地震干涉原理示意
Fig.3  地震干涉实现方法示意
Fig.4  小尺度模型
Fig.5  地震正演记录
Fig.6  干涉道集
Fig.7  参考道集
Fig.8  BP模型
Fig.9  RTM成像结果
Fig.10  不同观测系统地震记录对比
Fig.11  不同虚拟采集系统成像剖面
Fig.12  不同虚拟采集系统目标构造成像剖面局部放大
Fig.13  高陡构造—薄互层模型
Fig.14  不同偏移距正演结果
Fig.15  VSP地震记录不同波型
Fig.16  不同方法成像结果对比
[1] 贾承造, 王祖纲, 姜林, 等. 中国页岩油勘探开发研究进展与科学技术问题[J]. 世界石油工业, 2024, 31(4):1-11.
[1] Jia C Z, Wang Z G, Jing L, et al. Progress and key scientific and technological problems of shale oil exploration and development in China[J]. World Petroleum Industry, 2024, 31(4):1-11.
[2] 刁瑞. 提高地震分辨率处理效果定量评价方法研究[J]. 物探与化探, 2020, 44(2):381-387.
[2] Diao R. The quantitative evaluation method of seismic high resolution processing effect[J]. Geophysical and Geochemical Exploration, 2020, 44(2):381-387.
[3] 崔庆辉, 尚新民, 赵胜天, 等. 沙漠区基于浅层反射波的双参数扫描静校正方法[J]. 石油物探, 2023, 62 (5):866-877.
doi: 10.12431/issn.1000-1441.2023.62.05.006
[3] Cui Q H, Shang X M, Zhao S T, et al. Dual-parameter scanning static correction method based on shallow reflected waves in desert area[J]. Geophysical Prospecting for Petroleum, 2023, 62(5):866-877.
doi: 10.12431/issn.1000-1441.2023.62.05.006
[4] Schuster G T, Zhou M. A theoretical overview of model-based and correlation-based redatuming methods[J]. Geophysics, 2006, 71(4):SI103-SI110.
[5] 丁泽政, 曲英铭, 李振春, 等. VTI介质VSP数据地震干涉成像方法[J]. 石油物探, 2025, 64(3):502-509.
[5] Ding Z Z, Qu Y M, Li Z C, et al. VSP interferometric imaging in VTI media[J]. Geophysical Prospecting for Petroleum, 2025, 64(3):502-509.
[6] Snieder R. The theory of coda wave interferometry[J]. Pure and Applied Geophysics, 2006, 163(2):455-473.
[7] Schuster G T, Yu J, Sheng J, et al. Interferometric/daylight seismic imaging[J]. Geophysical Journal International, 2004, 157(2):838-852.
[8] Wapenaar K, van der Neut J, Ruigrok E. Passive seismic interferometry by multidimensional deconvolution[J]. Geophysics, 2008, 73(6):A51-A56.
[9] Wapenaar K, Broggini F, Slob E, et al. Three-dimensional single-sided Marchenko inverse scattering,data-driven focusing,Green's function retrieval,and their mutual relations[J]. Physical Review Letters, 2013, 110(8):084301.
[10] 曾靖雯, 韩立国, 许卓. 基于小波变换的虚震源信号去噪研究[J]. 地球物理学进展, 2018, 33(6):2507-2511.
[10] Zeng J W, Han L G, Xu Z. Virtual source signals de-noising based on wavelet transform[J]. Progress in Geophysics, 2018, 33(6):2507-2511.
[11] 王睿. 被动源地震虚炮集噪声压制及逆时偏移成像研究[D]. 长春: 吉林大学, 2022.
[11] Wang R. Research on noise suppression and inverse time migration imaging of passive source earthquake virtual shot set[D]. Changchun: Jilin University, 2022.
[12] 朱恒, 王德利, 时志安, 等. 地震干涉技术被动源地震成像[J]. 地球物理学进展, 2012, 27(2):496-502.
[12] Zhu H, Wang D L, Shi Z A, et al. Passive seismic imaging of seismic interferometry[J]. Progress in Geophysics, 2012, 27(2):496-502.
[13] 陈国金, 陈占国, 雷朝阳, 等. VSP地震干涉成像及应用研究[J]. 地球物理学报, 2020, 63(6):2357-2374.
doi: 10.6038/cjg2020N0374
[13] Chen G J, Chen Z G, Lei C Y, et al. The study of VSP seismic interferometric imaging method and its application[J]. Chinese Journal of Geophysics, 2020, 63(6):2357-2374.
[14] 王延光, 尚新民, 芮拥军. 单点高密度地震技术进展、实践与展望[J]. 石油物探, 2022, 61(4):571-590.
doi: 10.3969/j.issn.1000-1441.2022.04.001
[14] Wang Y G, Shang X M, Rui Y J. Progress, practice,and prospect of single-sensor high-density seismic technology[J]. Geophysical Prospecting for Petroleum, 2022, 61(4):571-590.
[15] 刁瑞, 冯玉苹. 利用储层的频谱吸收特性识别油气藏[J]. 石油地球物理勘探, 2012, 47(5):766-772.
[15] Diao R, Feng Y P. Hydrocarbon recognition based on spectrum absorption characteristics of reservoir[J]. Oil Geophysical Prospecting, 2012, 47(5):766-772.
[16] 李红梅, 曲志鹏, 张云银, 等. HTI介质下五维地震脆性稳定预测方法研究[J]. 石油物探, 2025, 64(1):151-162.
[16] Li H M, Qu Z P, Zhang Y Y, et al. Robust HTI brittleness prediction using 5D seismic data[J]. Geophysical Prospecting for Petroleum, 2025, 64(1):151-162.
[1] 窦强峰, 罗勇, 杨晓海, 谭佳. 基于近似真地表浮动面叠前深度偏移成像技术应用研究[J]. 物探与化探, 2022, 46(2): 444-450.
[2] 张珺. 加蓬盐下复杂构造区井控高精度变速成图的方法研究[J]. 物探与化探, 2017, 41(3): 535-541.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com