Please wait a minute...
E-mail Alert Rss
 
物探与化探  2022, Vol. 46 Issue (5): 1196-1206    DOI: 10.11720/wtyht.2022.1539
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
井中地震黏声逆时偏移的井型影响分析
王霁川(), 谷丙洛, 李振春
中国石油大学(华东) 地球科学与技术学院,山东 青岛 266580
Effects of well types on the visco-acoustic reverse time migration based on borehole seismics
WANG Ji-Chuan(), GU Bing-Luo, LI Zhen-Chun
School of Geosciences,China University of Petroleum (East China),Qingdao 266580,China
全文: PDF(4011 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

当前油气勘探目标具有“隐、碎、薄、小”等特点,对偏移成像技术提出了更高的要求。因采集方式特殊,井中地震具有资料分辨率高、波场信息丰富且干扰少等优势,理论上能够对井周的“隐、碎、薄、小”等复杂储集体实现高精度成像。井型对震源的布设有较大的限制,实际中除直井外,还存在斜井、曲斜井、水平井等多种井型,相同深度震源在不同井型中所处位置不相同,相同数量震源在不同井型中的空间分布也不同,使得地震波传播路径存在显著差异,影响成像质量。然而,当前井型对于偏移成像的影响具体如何,还没有定性或定量的认识,本文基于黏声逆时偏移成像方法,通过对比多种不同井型条件下的理论模型井中地震偏移成像结果,分析井型对偏移质量的影响。数值试算结果阐明了井型与井中地震偏移成像质量及有效成像范围间的定性关系,该结果也为井中地震采集系统设计提供了相应的理论支撑。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王霁川
谷丙洛
李振春
关键词 井中地震井型分数阶方程逆时偏移Q补偿    
Abstract

The current hydrocarbon exploration targets are concealed,scattered,thin,and small.These characteristics put forward higher requirements for the migration imaging technique.Owing to the special acquisition method,the data derived from borehole seismic have the advantages of high resolution,rich wave field information,and less interference.In theory,borehole seismic can be used to realize high-precision imaging of complex reservoirs,such as concealed,scattered,thin and small ones around the well.Well types greatly limit the layout of the seismic sources.In practice,besides vertical wells,there are also many types of wells,such as inclined wells,curved inclined wells,and horizontal wells.For different well types,the seismic sources at the same depth have different positions and the same number of seismic sources have different spatial distributions,leading to significantly different seismic wave propagation paths and further affecting the imaging quality.However,there is no qualitative or quantitative understanding of the effects of well types on migration imaging currently.Using the visco-acoustic inverse time migration imaging method,this study analyzed the effects of well types on migration quality by comparing the seismic migration imaging results of theoretical models under various well types.The numerical results provide the qualitative relationships between well types and borehole seismic migration imaging quality and effective imaging range.The results also provide corresponding theoretical support for the design of a borehole seismic acquisition system.

Key wordsborehole seismics    well type    fractional equation    reverse time migration    Q compensation
收稿日期: 2021-09-29      修回日期: 2022-07-22      出版日期: 2022-10-20
ZTFLH:  P631.4  
基金资助:国家自然科学基金项目(42004093);山东省自然基金项目(ZR2020QD050)
作者简介: 王霁川(1995-),男,硕士,从事地震波传播及逆时偏移成像方法研究工作。Email: wang-ji-chuan@foxmail.com
引用本文:   
王霁川, 谷丙洛, 李振春. 井中地震黏声逆时偏移的井型影响分析[J]. 物探与化探, 2022, 46(5): 1196-1206.
WANG Ji-Chuan, GU Bing-Luo, LI Zhen-Chun. Effects of well types on the visco-acoustic reverse time migration based on borehole seismics. Geophysical and Geochemical Exploration, 2022, 46(5): 1196-1206.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2022.1539      或      https://www.wutanyuhuatan.com/CN/Y2022/V46/I5/1196
Fig.1  井中地震(a)与地面地震(b)观测系统示意
Fig.2  井中地震地震波的传播路径示意
a—直井路径示意;b—曲斜井路径示意;c—水平井路径示意
Fig.3  井中地震波场延拓及逆时偏移原理示意
a—无衰减介质波场正向延拓;b—衰减介质波场正向延拓;c—声波逆时偏移;d—Q补偿逆时偏移
Fig.4  井中地震射线路径(a)及不同激发深度覆盖范围(b)示意
Fig.5  砂泥岩薄互层速度模型(a)和Q模型(b)
Fig.6  薄互层模型逆时偏移剖面
a—声波偏移剖面;b—黏声未补偿偏移剖面;c—黏声补偿后偏移剖面
Fig.7  薄互层模型逆时偏移剖面局部放大
a—声波偏移剖面;b—黏声未补偿偏移剖面;c—黏声补偿后偏移剖面
Fig.8  薄互层模型逆时偏移参考剖面
Fig.9  薄互层模型水平井逆时偏移剖面
a—水平井段500 m;b—水平井段1 000 m
Fig.10  薄互层模型右斜井逆时偏移剖面
a—斜率为0.5偏移剖面;b—斜率为1偏移剖面;c—右斜井偏移剖面
Fig.11  薄互层模型左斜井逆时偏移剖面
a—斜率为-0.5偏移剖面;b—斜率为-1偏移剖面;c—左斜井偏移剖面
Fig.12  薄互层模型多井逆时偏移剖面
a—双井偏移剖面;b—三井偏移剖面
[1] 何海清, 范土芝, 郭绪杰, 等. 中国石油 “十三五” 油气勘探重大成果与 “十四五” 发展战略[J]. 中国石油勘探, 2021, 26(1): 17-30.
doi: 10.3969/j.issn.1672-7703.2021.01.002
[1] He H Q, Fan T Z, Guo X J, et al. PetroChina: Major achievements in oil and gas exploration during the 13th Five-Year Plan period and development strategy for the 14th Five-Year Plan[J]. China Petroleum Exploration, 2021, 26(1): 17-30.
[2] 何登发, 李德生, 童晓光, 等. 中国沉积盆地油气立体综合勘探论[J]. 石油与天然气地质, 2021, 42(2):265-284.
[2] He D F, Li D S, Tong X G, et al. Integrated 3D hydrocarbon exploration in sedimentary basins of China[J]. Oil & Gas Geology, 2021, 42(2): 265-284.
[3] 杨勤勇, 杨江峰, 王咸彬, 等. 中国石化物探技术新进展及发展方向思考[J]. 中国石油勘探, 2021, 26(1): 121-130.
doi: 10.3969/j.issn.1672-7703.2021.01.010
[3] Yang Q Y, Yang J F, Wang X B, et al. Sinopec:Progress and development direction of geophysical prospecting technology[J]. China Petroleum Exploration, 2021, 26(1): 121-130.
[4] Weatherby B B. Method of making sub-surface determinations[P]. US, US2062151,1936-11-24.
[5] Deily F H, Dareing D W, Paff G H, et al. Downhole measurements of drill string forces and motions[J]. Journal of Engineering for Industry, 1968, 90(2):217-225.
doi: 10.1115/1.3604617
[6] Squire W D, Alsup J M. Linear signal processing and Ultrasonic transversal filters[J]. IEEE Transactions on Microwave Theory & Techniques, 1969, 17(11):1020-1040.
doi: 10.1109/TMTT.1969.1127091
[7] Haldorsen J, Miller D E, Walsh J J. Walk-away VSP using drill noise as a source[J]. Geophysics, 1995, 60(4):978.
doi: 10.1190/1.1443863
[8] 杨微. 随钻地震信号检测方法研究[D]. 北京: 中国地震局地球物理研究所, 2007.
[8] Yang W. Single detection of the drill bit seismic wave whlie drilling[D] .Beijing: Institute of Geophysics,China Earthquake Administration, 2007.
[9] 吕海川, 朱伟伦, 贾衡天, 等. 随钻VSP测量中地震波场的数值模拟[J]. 石油机械, 2017, 45(2):10-12,44.
[9] Lyu H C, Zhu W L, Jia H T, et al. Numerical simulation of seismic wave field in VSP-WD[J]. China Petroleum Machinery, 2017, 45(2):10-12,44.
[10] Liang Z H. Wavefield processing of reverse VSP data[J]. SEG Technical Program Expanded Abstracts, 1991, 10(1):1646.
[11] 胡建平. 变偏移距VSP射线追踪模型[J]. 西安工程学院学报, 1998, 20(S1):10-13.
[11] Hu J P. Walkaway VSP ray tracing model[J] .Journal of Earth Sciences and Environment, 1998, 20(S1):10-13.
[12] 朱龙生. 多方位角逆VSP层析成像[D]. 西安: 长安大学, 2003.
[12] Zhu L S. Multi-azimuth Inverse VSP tomography[D] .Xi'an: Chang’an University, 2003.
[13] 胡明顺. 煤层气RVSP地震勘探成像方法研究[D]. 北京: 中国矿业大学, 2013.
[13] Hu M S. Study on RVSP Seismic Imaging for Coalbed Methane Exploration[D] .Beijing: China University of Mining and Technology, 2013.
[14] 金红娣, 潘冬明, 杨光. RVSP等效地面处理方法研究[J]. 地球物理学进展, 2015, 30(2):641-649.
[14] Jin H D, Pan D M, Yang G. Study on equivalent surface data processing method in RVSP[J] .Progress in Geophysics, 2015, 30(2):641-649.
[15] 张辉. 碳酸岩裸露区煤田RVSP勘探技术研究与应用[D]. 北京: 中国矿业大学, 2018.
[15] Zhang H. Research and application of RVSP exploration technology in Carbonate exposed coalfield[D] .Beijing: China University of Mining and Technology, 2018.
[16] Hu M S, Pan D M, Zhou F B, et al. Multi-hole joint acquisition of a 3D-RVSP in a karst area:Case study in the Wulunshan Coal Field,China[J]. Appl. Geophys., 2020, 17:37-53.
doi: 10.1007/s11770-020-0808-8
[17] 邹才能, 张国生, 杨智, 等. 非常规油气概念, 特征, 潜力及技术——兼论非常规油气地质学[J]. 石油勘探与开发, 2013, 40(4): 385-399,454.
[17] Zou C N, Zhang G S, Yang Z, et al. Geological concepts, characteristics, resource potential and key techniques of unconventional hydrocarbon:On unconventional petroleum geology[J]. Petroleum Exploration and Development, 2013, 40(4): 385-399,454.
[18] 范廷恩, 余连勇, 杨飞龙, 等. 斜井 VSP 高斯射线束正演方法[J]. 中国海上油气, 2014, 26(5):30-35.
[18] Fan T E, Yu L Y, Yang F L, et al. A method of Gaussian beam forward modeling in deviated-well VSP[J]. China Offshore Oil and Gas, 2014, 26(5):30-35.
[19] 刘财, 冯晅, 张瑾. 稳定的迭代法反Q滤波[J]. 石油地球物理勘探, 2013, 48(6):890-895.
[19] Liu C, Feng X, Zhang J. A stable inverse Qfiltering using the iterative filtering method[J]. OGP, 2013, 48(6):890-895.
[20] 吴吉忠, 杨晓利, 龙洋. 一种稳定高效的等效Q值反Q滤波算法及应用[J]. 石油地球物理勘探, 2016, 51(1): 63-70.
[20] Wu J Z, Yang X L, Long Y. A robust approach of inverse Q filtering with equivalent Q[J]. OGP, 2016, 51(1):63-70.
[21] Hale D. Q-adaptive deconvolution[J]. SEG Technical Program Expanded Abstracts, 1982:82-83.
[22] Hargreaves N D. Similarity and the inverse Q filter:Some simple algorithms for inverse Q filtering[J]. Geophysics, 1992, 57(7): 944-947.
doi: 10.1190/1.1443307
[23] Deng F, McMechan G A. Viscoelastic true-amplitude prestack reverse-time depth migration[J]. Geophysics, 2008, 73(4):S143-S155.
doi: 10.1190/1.2938083
[24] Dutta G, Schuster G T. Attenuation compensation for least-squares reverse time migration using the viscoacoustic-wave equation[J]. Geophysics, 2014, 79(6): S251-S262.
doi: 10.1190/geo2013-0414.1
[25] Bai J, Chen G, Yingst D, et al. Attenuation compensation in viscoacoustic reverse time migration[J]. SEG Technical Program Expanded Abstracts, 2013:3825-3830.
[26] Tian K, Huang J, Bu C, et al. Viscoacoustic reverse time migration by adding a regularization term[C]// New Orleans:2015 SEG Annual Meeting, 2015:4127-4131.
[27] 田坤, 张学涛, 李国磊. 添加正则化项的黏声逆时偏移成像方法研究[J]. CT 理论与应用研究, 2017, 26(6):669-677.
[27] Tian K, Zhang X T, Li G L. Viscoacoustic reverse time migration by adding a regularization term[J]. Computerized Tomography Theory and Applications, 2017, 26(6):669-677.
[28] Kjartansson E. Constant Q-wave propagation and attenuation[J]. Journal of Geophysical Research:Solid Earth, 1979, 84(B9):4737-4748.
[29] Zhang Y, Zhang P, Zhang H. Compensating for visco-acoustic effects in reverse-time migration[M]// SEG Technical Program Expanded Abstracts, 2010:3160-3164.
[30] Zhu T, Harris J M. Modeling acoustic wave propagation in heterogeneous attenuating media using decoupled fractional Laplacians[J]. Geophysics, 2014, 79(3):S165-S174.
[31] 吴玉, 符力耘, 陈高祥. 基于分数阶拉普拉斯算子解耦的黏声介质地震正演模拟与逆时偏移[J]. 地球物理学报, 2017, 60(4): 1527-1537.
[31] Wu Y, Fu L Y, Chen G X. Forward modeling and reverse time migration of viscoacoustic media using decoupled fractional Laplacians[J]. Chinese J. Geophys., 2017, 60(4):1527-1537.
[32] Zhu T, Harris J M. Improved seismic image by Q-compensated reverse time migration:Application to crosswell field data, west Texas[J]. Geophysics, 2015, 80(2):B61-B67.
doi: 10.1190/geo2014-0463.1
[33] 罗文山, 陈汉明, 王成祥, 等. 时间域黏滞波动方程及其数值模拟新方法[J]. 石油地球物理勘探, 2016, 51(4):707-713.
[33] Luo W S, Chen H M, Wang C X, et al. A novel time-domain viscoacoustic wave equation and its numerical simulation[J]. OGP, 2016, 51(4):707-713.
[34] Hu W, Zhou T, Ning J. An efficient Q-RTM algorithm based on local differentiation operators[M]// SEG Technical Program Expanded Abstracts, 2016:4183-4187.
[35] Li Q, Zhou H, Zhang Q, et al. Efficient reverse time migration based on fractional Laplacian viscoacoustic wave equation[J]. Geophysical Journal International, 2016, 204(1):488-504.
doi: 10.1093/gji/ggv456
[36] Sun J, Zhu T. Strategies for stable attenuation compensation in reverse-time migration[J]. Geophysical Prospecting, 2018, 66(3):498-511.
doi: 10.1111/1365-2478.12579
[37] Zhao Y, Mao N, Ren Z. A stable and efficient approach of Q reverse time migration[J]. Geophysics, 2018, 83(6):S557-S567.
doi: 10.1190/geo2018-0022.1
[38] 冀国强, 石颖. 正则化形式的稳定粘声逆时偏移成像方法[J]. 石油物探, 2020, 59(3):374-381.
[38] Ji G Q, Shi Y. Stable and regularized visco-acoustic reverse time migration[J]. Geophysical Prospecting for Petroleum, 2020, 59(3):374-381.
[39] 陈汉明, 汪燚林, 周辉. 一阶速度—压力常分数阶黏滞声波方程及其数值模拟[J]. 石油地球物理勘探, 2020, 55(2): 302-310.
[39] Chen H M, Wang Y L, Zhou H. A novel constant fractional-order Laplacians viscoacoustic wave equation and its numerical simulation method[J]. OGP, 2020, 55(2): 302-310.
[40] Liu Y, Sen M K. A hybrid scheme for absorbing edge reflections in numerical modeling of wave propagation[J]. Geophysics, 2010, 75(2): A1-A6.
doi: 10.1190/1.3295447
[1] 席宇何, 王洪华, 王欲成, 吴祺铭. 基于速度移动窗的最小熵法在GPR逆时偏移中的应用[J]. 物探与化探, 2023, 47(5): 1250-1260.
[2] 徐雷良, 赵国勇, 张剑, 钟天淼, 谷佳莹, 游剑, 曲英铭. 绕射波与一次波联合黏声最小二乘逆时偏移[J]. 物探与化探, 2023, 47(1): 91-98.
[3] 杨宏伟, 王霁川, 孔庆丰, 谷丙洛, 孙卫国, 李振春. 井中地震粘声逆时偏移成像影响因素分析[J]. 物探与化探, 2022, 46(4): 877-886.
[4] 段莹, 张高成, 谭雅丽. 泌阳凹陷高陡构造带地震成像[J]. 物探与化探, 2021, 45(4): 981-989.
[5] 刘炜, 王彦春, 毕臣臣, 徐仲博. 基于优化交错网格有限差分法的VSP逆时偏移[J]. 物探与化探, 2020, 44(6): 1368-1380.
[6] 陈紫静, 陈清礼. 瞬变电磁的逆时偏移成像方法[J]. 物探与化探, 2020, 44(6): 1415-1419.
[7] 马振, 孙成禹, 彭鹏鹏, 姚振岸. 速度误差和地震噪声对最小二乘逆时偏移的影响分析[J]. 物探与化探, 2020, 44(2): 329-338.
[8] 龚俊波, 王洪华, 王敏玲, 罗泽明. 逆时偏移在探地雷达数据处理中的应用[J]. 物探与化探, 2019, 43(4): 835-842.
[9] 宋宗平, 陈可洋, 杨微, 李来林, 吴清岭, 范兴才. 地震波逆时偏移中两种成像条件应用效果对比[J]. 物探与化探, 2019, 43(3): 618-625.
[10] 郭旭, 黄建平, 李振春, 黄金强, 朱峰. 基于行波分离的VTI介质逆时偏移[J]. 物探与化探, 2019, 43(1): 100-109.
[11] 许璐. 地震数据炮域规则化方法研究及应用[J]. 物探与化探, 2018, 42(6): 1245-1252.
[12] 李金丽, 曲英铭, 刘建勋, 李振春, 王凯, 于博. 三维黏声最小二乘逆时偏移方法模型研究[J]. 物探与化探, 2018, 42(5): 1013-1025.
[13] 彭鹏鹏, 孙成禹, 马振, 李文静. 近地表散射体波场特征分析及成像[J]. 物探与化探, 2018, 42(5): 990-998.
[14] 李金丽, 曲英铭, 刘建勋, 岳航羽, 李培, 陈德元. 天然气水合物储层弹性波最小二乘逆时偏移研究[J]. 物探与化探, 2017, 41(6): 1050-1059.
[15] 张丽美, 成谷. 参数组合优化的随机边界条件及其在地震RTM中的应用[J]. 物探与化探, 2017, 41(5): 890-898.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com