Please wait a minute...
E-mail Alert Rss
 
物探与化探  2024, Vol. 48 Issue (4): 1086-1093    DOI: 10.11720/wtyht.2024.1286
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
面向盐下构造的染色逆时偏移成像
赵国勇1(), 张剑1, 刘畅2,3, 任一2,3, 邢伯申2,3, 李自正2,3, 曲英铭2,3()
1.中石化石油工程地球物理有限公司科技研发中心,江苏 南京 210005
2.中国石油大学(华东) 深层油气全国重点实验室,山东 青岛 266580
3.中国石油大学(华东) 地球科学与技术学院,山东 青岛 266580
Staining algorithm-based reverse time migration imaging for pre-salt structures
ZHAO Guo-Yong1(), ZHANG Jian1, LIU Chang2,3, REN Yi2,3, XING Bo-Shen2,3, LI Zi-Zheng2,3, QU Ying-Ming2,3()
1. R&D Center of Science and Technology,Sinopec Geophysical Corporation,Nanjing 210005,China
2. Key Laboratory of Deep Oil and Gas,China University of Petroleum(East China),Qingdao 266580,China
3. School of Geosciences,China University of Petroleum(East China),Qingdao 266580,China
全文: PDF(4043 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

逆时偏移技术能够精准模拟地震波在地下介质中的传播过程并对地下构造成像,但在弱照明区域,地震波会发生反射、折射、散射等现象,导致逆时偏移成像结果中部分区域信噪比降低。染色算法通过将波动方程推广到复数域,实现针对已知地质体的追踪和成像。在染色算法中,需要输入常规的实部速度场和一个虚部速度场。常规染色算法需要已知真实的地下结构,这不符合实际情况,本文提出区域染色,促进染色算法的实用化发展。本文聚焦盐下成像,提出面向盐下构造的基于染色算法的逆时偏移成像方法。通过盐丘模型证明该方法可以显著提高自选目标区域的成像信噪比与分辨率。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵国勇
张剑
刘畅
任一
邢伯申
李自正
曲英铭
关键词 提高照明度染色算法逆时偏移盐下成像    
Abstract

The reverse time migration (RTM) technique can accurately simulate the propagation of seismic waves in subsurface media and image subsurface structures.However,seismic waves can be reflected,refracted,or scattered in weakly illuminated areas,leading to locally reduced signal-to-noise ratios (SNRs) in RTM imaging results.The staining algorithm can achieve the tracking and imaging of known geobodies by generalizing the wave equation to the complex domain.It requires a conventional real velocity and an imaginary velocity field as inputs.A conventional staining algorithm requires known real subsurface structures,which is impractical in this study.Hence,this study put forward regional staining to promote the practical development of the staining algorithm.Focusing on subsalt imaging,this study proposed a staining algorithm-based RTM imaging method for subsalt structures.The salt dome model demonstrated that the method proposed in this study can significantly improve the imaging SNRs and resolution of self-selected target regions.

Key wordsillumination improvement    staining algorithm    reverse time migration    pre-salt imaging
收稿日期: 2023-07-20      修回日期: 2024-03-28      出版日期: 2024-08-20
ZTFLH:  P631.4  
基金资助:国家自然科学基金项目(42174138);国家自然科学基金项目(42074133);中国石化科技项目(P23176);中国石化科技项目(P22165)
通讯作者: 曲英铭(1990-),男,博士,教授,博士生导师,主要从事地震波传播、成像与反演等方面的研究工作。Email:quyingming@upc.edu.cn
作者简介: 赵国勇(1980-),男,高级工程师,主要从事地震资料采集技术研究工作。Email:27372791@qq.com
引用本文:   
赵国勇, 张剑, 刘畅, 任一, 邢伯申, 李自正, 曲英铭. 面向盐下构造的染色逆时偏移成像[J]. 物探与化探, 2024, 48(4): 1086-1093.
ZHAO Guo-Yong, ZHANG Jian, LIU Chang, REN Yi, XING Bo-Shen, LI Zi-Zheng, QU Ying-Ming. Staining algorithm-based reverse time migration imaging for pre-salt structures. Geophysical and Geochemical Exploration, 2024, 48(4): 1086-1093.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2024.1286      或      https://www.wutanyuhuatan.com/CN/Y2024/V48/I4/1086
Fig.1  逆时偏移成像原理
Fig.2  盐丘速度模型
Fig.3  盐丘速度模型波场快照
a—1 200 ms时刻的波场快照;b—1 400 ms时刻的波场快照
Fig.4  盐丘速度模型炮记录
a—含直达波炮记录;b—不含直达波炮记录
Fig.5  盐丘速度模型逆时偏移成像结果
Fig.6  染色算法逆时偏移流程
Fig.7  盐丘虚部速度
Fig.8  盐丘虚部波场快照
a—1 200 ms时刻的波场快照;b—1 400 ms时刻的波场快照
Fig.9  盐丘虚部炮记录
Fig.10  盐丘染色逆时偏移成像结果
Fig.11  图5图10局部放大对比
a—图5局部放大; b—图10局部放大
Fig.12  盐丘模型照明度
Fig.13  盐丘模型
a—增大染色范围后的盐丘虚部速度;b—增大染色范围后的盐丘染色逆时偏移成像结果
Fig.14  随机误差分析
a—引入±5%的随机误差的偏移速度场;b—引入随机误差后的速度场与真实速度场的差异;c—基于随机误差偏移速度场的常规逆时偏移成像结果;d—基于随机误差偏移速度场的染色逆时偏移成像结果
Fig.15  异常体分析
a—含薄层的盐丘模型;b—含薄层的盐丘模型的常规逆时偏移;c—精准染色的虚部速度场;d—基于精准染色的逆时偏移结果
Fig.16  约束区域染色成像
a—区域染色的虚部速度场;b—基于区域染色的逆时偏移结果;c—基于约束区域染色的逆时偏移结果;d—限时吸收边界条件逆时偏移结果
[1] Hemon C. Equations d'onde et modeles[J]. Geophysical Prospecting, 1978, 26(4):790-821.
[2] Whitmore N D. Iterative depth migration by backward time propagation[C]// SEG Technical Program Expanded Abstracts 1983,Society of Exploration Geophysicists, 1983:382-385.
[3] Baysal E, Kosloff D D, Sherwood J W C. Reverse time migration[J]. Geophysics, 1983, 48(11):1514-1524.
[4] Loewenthal D, Mufti I R. Reversed time migration in spatial frequency domain[J]. Geophysics, 1983, 48(5):627-635.
[5] McMechan G A. Migration by extrapolation of time-dependent boundary values[J]. Geophysical Prospecting, 1983, 31(3):413-420.
[6] Levin S A. Principle of reverse-time migration[J]. Geophysics, 1984, 49(5):581-583.
[7] Teng Y C, Dai T F. Finite-element prestack reverse-time migration for elastic waves[J]. Geophysics, 1989, 54(9):1204-1208.
[8] Dong Z X, McMechan G A. 3-D prestack migration in anisotropic media[J]. Geophysics, 1993, 58(1):79-90.
[9] Zhu J M, Lines L R. Comparison of Kirchhoff and reverse-time migration methods with applications to prestack depth imaging of complex structures[J]. Geophysics, 1998, 63(4):1166-1176.
[10] Causse E, Ursin B. Viscoacoustic reverse-time migration[J]. Journal of Seismic Exploration, 2000, 9(2):165-183.
[11] Zhang Y, Xu S, Bleistein N, et al. True-amplitude,angle-domain,common-image gathers from one-way wave-equation migrations[J]. Geophysics, 2007, 72(1):S49-S58.
[12] Fletcher R P, Nichols D, Cavalca M. Wavepath-consistent effective Q estimation for Q-compensated reverse-time migration[C]// Copenhagen:74th EAGE Conference and Exhibition incorporating EUROPEC 2012,EAGE Publications BV,2012.
[13] 刘金朋, 王培培, 方中于, 等. 逆时偏移对棱柱波和回折波的成像效果分析[J]. 地球物理学进展, 2015, 30(3):1396-1401.
[13] Liu J P, Wang P P, Fang Z Y, et al. Imaging effect analysis of the prism waves and the diving waves based on reversetime migration[J]. Progress in Geophysics, 2015, 30(3):1396-1401.
[14] 邓文志, 李振春, 王延光, 等. 基于稳定逆时传播算子的黏声介质最小二乘逆时偏移[J]. 物探与化探, 2015, 39(4):791-796.
[14] Deng W Z, Li Z C, Wang Y G, et al. The least-squares reverse time migration for visco-acoustic medium based on a stable reverse-time propagator[J]. Geophysical and Geochemical Exploration, 2015, 39(4):791-796.
[15] 黄建平, 刘培君, 李庆洋, 等. 一种棱柱波逆时偏移方法及优化[J]. 石油物探, 2016, 55(5):719-727.
doi: 10.3969/j.issn.1000-1441.2016.05.011
[15] Huang J P, Liu P J, Li Q Y, et al. An optimized reverse time migration approach for the prism wave[J]. Geophysical Prospecting for Petroleum, 2016, 55(5):719-727.
doi: 10.3969/j.issn.1000-1441.2016.05.011
[16] Qu Y M, Huang J P, Li Z C, et al. Attenuation compensation in anisotropic least-squares reverse time migration[J]. Geophysics, 2017, 82(6):S411-S423.
[17] Qu Y M, Li J L, Huang J P, et al. Elastic least-squares reverse time migration with velocities and density perturbation[J]. Geophysical Journal International, 2018, 212(2):1033-1056.
[18] 吴玉, 符力耘, 陈高祥. 基于分数阶拉普拉斯算子解耦的黏声介质地震正演模拟与逆时偏移[J]. 地球物理学报, 2017, 60(4):1527-1537.
doi: 10.6038/cjg20170425
[18] Wu Y, Fu L Y, Chen G X. Forward modeling and reverse time migration of viscoacoustic media using decoupled fractional Laplacians[J]. Chinese Journal of Geophysics, 2017, 60(4):1527-1537.
[19] 李金丽, 曲英铭, 刘建勋, 等. 三维黏声最小二乘逆时偏移方法模型研究[J]. 物探与化探, 2018, 42(5):1013-1025.
[19] Li J L, Qu Y M, Liu J X, et al. A model study of three-dimensional viscoacoustic least-squares reverse time migration[J]. Geophysical and Geochemical Exploration, 2018, 42(5):1013-1025.
[20] 郭旭, 黄建平, 李振春, 等. 基于行波分离的VTI介质逆时偏移[J]. 物探与化探, 2019, 43(1):100-109.
[20] Guo X, Huang J P, Li Z C, et al. Reverse time migration in VTI media based on wavefield decomposition[J]. Geophysical and Geochemical Exploration, 2019, 43(1):100-109.
[21] 许璐, 张永生, 李博, 等. 逆时偏移波场分解成像条件研究及应用[J]. 地球物理学进展, 2019, 34(4):1541-1547.
[21] Xu L, Zhang Y S, Li B, et al. Research and application of reverse time migration using wavefield decomposition imaging condition[J]. Progress in Geophysics, 2019, 34(4):1541-1547.
[22] 段沛然, 谷丙洛, 李振春. 基于优化算子边界存储策略的高效逆时偏移方法[J]. 石油地球物理勘探, 2019, 54(1):93-101.
[22] Duan P R, Gu B L, Li Z C. An efficient reverse time migration in the vertical time domain based on optimal operator boundary storage strategy[J]. Oil Geophysical Prospecting, 2019, 54(1):93-101.
[23] 曲英铭, 魏哲枫, 刘畅, 等. 面向高陡构造的黏声棱柱波逆时偏移[J]. 石油地球物理勘探, 2020, 55(4):793-803,701-702.
[23] Qu Y M, Wei Z F, Liu C, et al. Viscoacoustic reverse time migration of prismatic wave for steeply dipped structures[J]. Oil Geophysical Prospecting, 2020, 55(4):793-803,701-702.
[24] 杨宏伟, 王霁川, 孔庆丰, 等. 井中地震粘声逆时偏移成像影响因素分析[J]. 物探与化探, 2022, 46(4):877-886.
[24] Yang H W, Wang J C, Kong Q F, et al. An analysis of influencing factors of visco-acoustic reverse time migration imaging in borehole seismic[J]. Geophysical and Geochemical Exploration, 2022, 46(4):877-886.
[25] 徐雷良, 赵国勇, 张剑, 等. 绕射波与一次波联合黏声最小二乘逆时偏移[J]. 物探与化探, 2023, 47(1):91-98.
[25] Xu L L, Zhao G Y, Zhang J, et al. Joint Q-compensated least-squares reverse time migration using primary and diffracted waves[J]. Geophysical and Geochemical Exploration, 2023, 47(1):91-98.
[26] Chen B, Jia X F. Staining algorithm for seismic modeling and migration[J]. Geophysics, 2014, 79(4):S121-S129.
[27] 杨路. 染色算法在三维复杂介质微弱地震信号模拟和成像中的应用[D]. 合肥: 中国科学技术大学, 2017.
[27] Yang L. Staining algorithm in 3D seismic modelling and imaging[D]. Hefei: University of Science and Technology of China, 2017.
[28] 李启华. 基于微弱信号的高质量偏移成像方法研究及其应用[D]. 合肥: 中国科学技术大学, 2018.
[28] Li Q H. Research and application of high-quality migration method for weak signal imaging[D]. Hefei: University of Science and Technology of China, 2018.
[29] 刘玉敏. 粘弹性波最小二乘逆时偏移成像研究[D]. 大庆: 东北石油大学, 2020.
[29] Liu Y M. Research on viscoelastic least-squares reverse time migration imaging[D]. Daqing: Northeast Petroleum University, 2020.
[1] 席宇何, 王洪华, 王欲成, 吴祺铭. 基于速度移动窗的最小熵法在GPR逆时偏移中的应用[J]. 物探与化探, 2023, 47(5): 1250-1260.
[2] 徐雷良, 赵国勇, 张剑, 钟天淼, 谷佳莹, 游剑, 曲英铭. 绕射波与一次波联合黏声最小二乘逆时偏移[J]. 物探与化探, 2023, 47(1): 91-98.
[3] 王霁川, 谷丙洛, 李振春. 井中地震黏声逆时偏移的井型影响分析[J]. 物探与化探, 2022, 46(5): 1196-1206.
[4] 杨宏伟, 王霁川, 孔庆丰, 谷丙洛, 孙卫国, 李振春. 井中地震粘声逆时偏移成像影响因素分析[J]. 物探与化探, 2022, 46(4): 877-886.
[5] 段莹, 张高成, 谭雅丽. 泌阳凹陷高陡构造带地震成像[J]. 物探与化探, 2021, 45(4): 981-989.
[6] 刘炜, 王彦春, 毕臣臣, 徐仲博. 基于优化交错网格有限差分法的VSP逆时偏移[J]. 物探与化探, 2020, 44(6): 1368-1380.
[7] 陈紫静, 陈清礼. 瞬变电磁的逆时偏移成像方法[J]. 物探与化探, 2020, 44(6): 1415-1419.
[8] 马振, 孙成禹, 彭鹏鹏, 姚振岸. 速度误差和地震噪声对最小二乘逆时偏移的影响分析[J]. 物探与化探, 2020, 44(2): 329-338.
[9] 龚俊波, 王洪华, 王敏玲, 罗泽明. 逆时偏移在探地雷达数据处理中的应用[J]. 物探与化探, 2019, 43(4): 835-842.
[10] 宋宗平, 陈可洋, 杨微, 李来林, 吴清岭, 范兴才. 地震波逆时偏移中两种成像条件应用效果对比[J]. 物探与化探, 2019, 43(3): 618-625.
[11] 郭旭, 黄建平, 李振春, 黄金强, 朱峰. 基于行波分离的VTI介质逆时偏移[J]. 物探与化探, 2019, 43(1): 100-109.
[12] 许璐. 地震数据炮域规则化方法研究及应用[J]. 物探与化探, 2018, 42(6): 1245-1252.
[13] 彭鹏鹏, 孙成禹, 马振, 李文静. 近地表散射体波场特征分析及成像[J]. 物探与化探, 2018, 42(5): 990-998.
[14] 李金丽, 曲英铭, 刘建勋, 李振春, 王凯, 于博. 三维黏声最小二乘逆时偏移方法模型研究[J]. 物探与化探, 2018, 42(5): 1013-1025.
[15] 李金丽, 曲英铭, 刘建勋, 岳航羽, 李培, 陈德元. 天然气水合物储层弹性波最小二乘逆时偏移研究[J]. 物探与化探, 2017, 41(6): 1050-1059.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com