Please wait a minute...
E-mail Alert Rss
 
物探与化探  2025, Vol. 49 Issue (4): 888-895    DOI: 10.11720/wtyht.2025.2533
  方法研究信息处理仪器研制 本期目录 | 过刊浏览 | 高级检索 |
时频分析技术在蓬莱气区深层高频噪声压制中的应用
韩嵩1(), 汤聪1, 张旋1, 曾鸣1, 彭浩天1, 吕文正1, 屠志慧1, 李坷芮1, 朱海华2
1.中国石油西南油气田分公司 勘探开发研究院, 四川 成都 610041
2.北京优创艾能科技有限公司, 北京 100192
Application of time-frequency analysis in the suppression of deep high-frequency noise in the Penglai gas area
HAN Song1(), TANG Cong1, ZHANG Xuan1, ZENG Ming1, PENG Hao-Tian1, LYU Wen-Zheng1, TU Zhi-Hui1, LI Ke-Rui1, ZHU Hai-Hua2
1. Research Institute of Exploration and Development, Southwest Oil & Gas Field Company, PetroChina, Chengdu 610041, China
2. Beijing GeoEnergy Services Co., Ltd., Beijing 100192, China
全文: PDF(7721 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

地震波在地下传播过程中会发生能量衰减,尤以高频成分衰减最为明显,导致高频段信号的信噪降低,极大降低了深层油气地震勘探的准确度。为了更好地提高深层资料信噪比,本文基于地震信号的非平稳特征,采用时频分析技术描述信号频率随时间变化的关系,提出一种基于时频分析法压制深层高频噪声的方法。利用有效信号的时频特征具有稳定性和相似性、而高频干扰具有不确定性和随机性的原理,提出一种基于相关性分析的自适应阈值选择策略,从优势频段提取有效信号的时频特征,与高频段信号时频特征进行对比分析,对高频端时频谱进行特征约束衰减,从而达到压制高频噪声的目的。理论模型和实际资料处理结果表明,该方法能够较好地压制高频噪声,有效提高深层资料的信噪比。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
韩嵩
汤聪
张旋
曾鸣
彭浩天
吕文正
屠志慧
李坷芮
朱海华
关键词 信噪比高频噪声时频分析特征约束深层油气蓬莱气区    
Abstract

Seismic waves, particularly their high-frequency components, will undergo energy attenuation during subsurface propagation. This results in a low signal-to-noise ratio (SNR) within the high-frequency band, significantly reducing the accuracy of seismic exploration for deep oil and gas. To enhance the SNR of deep seismic data, this study employed the time-frequency analysis technique to describe the time variations of signal frequency based on the non-stationary characteristics of seismic signals. Accordingly, this study proposed a method for suppressing deep high-frequency noise based on time-frequency analysis. Considering the stable and similar time-frequency characteristics of effective signals and the uncertain and random high-frequency interference, this study proposed an adaptive threshold selection strategy based on correlation analysis. This strategy involves extracting the time-frequency characteristics of effective signals from an advantageous frequency band and comparing them with the time-frequency characteristics within the high-frequency band. Subsequently, feature-constrained attenuation was applied to time-frequency spectra in the high-frequency band, thereby suppressing high-frequency noise. Theoretical models and actual data processing results demonstrate that the proposed method can effectively suppress high-frequency noise and significantly enhance the SNR of deep seismic data.

Key wordssignal-to-noise ratio (SNR)    high-frequency noise    time-frequency analysis    feature-constrained    deep oil and gas    Penglai gas area
收稿日期: 2023-12-12      修回日期: 2025-04-01      出版日期: 2025-08-20
ZTFLH:  P631.4  
基金资助:中国石油西南油气田分公司科技项目“复杂构造灰岩出露区地震激发波场传播理论研究”(25XNYTSC026)
作者简介: 韩嵩(1982-),男,高级工程师,主要从事地震资料处理技术研究工作。Email: guoreng@petrochina.com.cn
引用本文:   
韩嵩, 汤聪, 张旋, 曾鸣, 彭浩天, 吕文正, 屠志慧, 李坷芮, 朱海华. 时频分析技术在蓬莱气区深层高频噪声压制中的应用[J]. 物探与化探, 2025, 49(4): 888-895.
HAN Song, TANG Cong, ZHANG Xuan, ZENG Ming, PENG Hao-Tian, LYU Wen-Zheng, TU Zhi-Hui, LI Ke-Rui, ZHU Hai-Hua. Application of time-frequency analysis in the suppression of deep high-frequency noise in the Penglai gas area. Geophysical and Geochemical Exploration, 2025, 49(4): 888-895.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2025.2533      或      https://www.wutanyuhuatan.com/CN/Y2025/V49/I4/888
Fig.1  蓬探气区含深层噪声的部分典型剖面分频显示结果
Fig.2  蓬探气区含深层噪声的典型单炮曲波变换压噪效果对比
Fig.3  时频分析法压制高频噪声的处理流程
Fig.4  理论模型测试效果
Fig.5  时频法去噪前后的单道地震信号
Fig.6  常规去噪和时频法去噪单炮效果对比
Fig.7  常规去噪和时频法去噪叠加剖面对比
[1] 石昕, 戴金星, 赵文智. 深层油气藏勘探前景分析[J]. 中国石油勘探, 2005, 10(1):1-10,1.
[1] Shi X, Dai J X, Zhao W Z. Analysis of deep oil and gas reservoirs exploration prospect[J]. China Petrleum Exploration, 2005, 10(1):1-10,1.
[2] 杨雨, 文龙, 宋泽章, 等. 川中古隆起北部蓬莱气区多层系天然气勘探突破与潜力[J]. 石油学报, 2022, 43(10):1351-1368,1394.
doi: 10.7623/syxb202210001
[2] Yang Y, Wen L, Song Z Z, et al. Breakthrough and potential of natural gas exploration in multi-layer system of Penglai gas area in the north of central Sichuan paleo-uplift[J]. Acta Petrolei Sinica, 2022, 43(10):1351-1368,1394.
doi: 10.7623/syxb202210001
[3] 张自力, 乔艳萍, 豆霜, 等. 四川盆地蓬莱气区震旦系灯影组二段岩溶古地貌与控储模式[J]. 石油与天然气地质, 2024, 45(1):200-214.
[3] Zhang Z L, Qiao Y P, Dou S, et al. Karst paleogeomorphology and reservoir-controlling model of the second member of Sinian Dengying Formation in Penglai gas area,Sichuan Basin[J]. Oil & Gas Geology, 2024, 45(1):200-214.
[4] 于常青, 杨午阳, 杨文采. 关于油气地震勘探的基础研究问题[J]. 岩性油气藏, 2007, 19(2):117-120.
[4] Yu C Q, Yang W Y, Yang W C. About basic research of petroleum seismic prospecting[J]. Lithologic Reservoirs, 2007, 19(2):117-120.
doi: 10.3969/j.issn.1673-8926.2007.02.024
[5] 杨德宽, 郑泽继, 胡立新, 等. 对深层地震勘探中随机噪声的一点认识[J]. 石油物探, 2000, 39(3):50-61,72.
[5] Yang D K, Zheng Z J, Hu L X, et al. Some cognitions on random noise in deep-layer seismic exploration[J]. Geophysical Prospecting for Petrole, 2000, 39(3):50-61,72.
[6] 朱伟强, 李卫忠, 王成礼, 等. 济阳坳陷深层地震资料处理技术及应用[J]. 石油物探, 2002, 41(2):161-168.
[6] Zhu W Q, Li W Z, Wang C L, et al. Technology and application of deep seismic data processing in Jiyang Depression[J]. Geophysical Prospecting for Petroleum, 2002, 41(2):161-168.
[7] 刘建芳, 华伟, 王士昆, 等. 江苏低信噪比地区深层地震资料处理方法研究[J]. 石油物探, 2008, 47(6):583-587,18.
[7] Liu J F, Hua W, Wang S K, et al. Deep seismic data processing method used in low S/N ratio area of Jiangsu oilfield[J]. Geophysical Prospecting for Petroleum, 2008, 47(6):583-587,18.
[8] 孙文涵. 深层地震资料噪声压制与衰减补偿方法研究[D]. 青岛: 中国石油大学(华东), 2020.
[8] Sun W H. Research on noise suppression and attenuation compensation methods for deep seismic data[D]. Qingdao: China University of Petroleum (East China), 2020.
[9] 宗涛, 孟鸿鹰, 贾玉兰, 等. 小波包f-x域前后向预测去噪[J]. 地球物理学报, 1998, 41(S1):337-346.
[9] Zong T, Meng H Y, Jia Y L, et al. Denoising method based on wavelet packet and forward-backward prediction in f-x domain[J]. Chinese Journal of Geophysics, 1998, 41(S1):337-346.
[10] 刘葵, 刘招君, 朱建伟, 等. 时频分析在石油地球物理勘探中的应用[J]. 世界地质, 2000, 19(3):282-285.
[10] Liu K, Liu Z J, Zhu J W, et al. Application of time-frequency analysis in geology[J]. World Geology, 2000, 19(3):282-285.
[11] 邹文, 陈爱萍, 顾汉明. 联合时频分析技术在地震勘探中的应用[J]. 勘探地球物理进展, 2004(4):246-250,259.
[11] Zou W, Chen A P, Gu H M. Joint time-frequency analysis and its application in seismic prospecting[J]. Progress in Exploration Geophysics, 2004(4):246-250,259.
[12] M 波特诺夫. 基于短时傅里叶分析的数字信号和系统的时频表示[J]. IEEE: 声学、语音和信号处理,1980.
[12] Portnoff M. Time-frequency represent-ation of digital signals and systems based on short-time Fourier analysis[J]. IEEE: Acoustics, Speech and Signal Processing,1980.
[13] 施倩, 陈大鹏. 联合时频分析[J]. IEEE:信号处理,1999.
[13] Qian S, Chen D P. Time-frequency analysis[J]. IEEE:Signal Processing Magazine,1999.
[14] 杨海涛, 朱仕军, 杨爱国, 等. S变换时变滤波在去噪处理中的应用研究[J]. 西南石油大学学报:自然科学版, 2009, 31(6):56-58,208.
[14] Yang H T, Zhu S J, Yang A G, et al. Application research on time variable filtering with S-transform in denoising processing[J]. Journal of Southwest Petroleum University:Science & Technology Edition, 2009, 31(6):56-58,208.
[15] 李军华. 基于小波变换理论的地震资料去噪方法研究及应用[J]. 能源技术与管理, 2017, 42(5):175-177.
[15] Li J H. Research and application of seismic data denoising method based on wavelet transform theory[J]. Energy Technology and Management, 2017, 42(5):175-177.
[16] 韦红, 白清云, 张鹏志, 等. 基于反褶积广义S变换的双相介质理论油水识别法在渤海S油田馆陶组的应用[J]. 物探与化探, 2021, 45(6):1394-1401.
[16] Wei H, Bai Q Y, Zhang P Z, et al. The application of seismic oil-water identification method to Guantao Formation of Bohai S oil field[J]. Geophysical and Geochemical Exploration, 2021, 45(6):1394-1401.
[17] 张金强. 基于正则化理论的时频分析方法及应用[J]. 物探与化探, 2023, 47(4):965-974.
[17] Zhang J Q. A regularization theory-based method for time-frequency analysis and its applications[J]. Geophysical and Geochemical Exploration, 2023, 47(4):965-974.
[18] 李雪英, 孙丹, 侯相辉, 等. 基于广义S变换、经验模态分解叠前去噪方法的比较[J]. 地球物理学进展, 2011, 26(6):2039-2045.
[18] Li X Y, Sun D, Hou X H, et al. Comparison of generalized S transform and empirical mode decomposition in high frequency seismic noise suppression[J]. Progress in Geophysics, 2011, 26(6):2039-2045.
[19] 胡瑞卿, 何俊杰, 李华飞, 等. 时频域变分模态分解地震资料去噪方法[J]. 石油地球物理勘探, 2021, 56(2):257-264,210.
[19] Hu R Q, He J J, Li H F, et al. Seismic data de-noising method based on VMD in time-frequency domain[J]. Oil Geophysical Prospecting, 2021, 56(2):257-264,210.
[20] 邵丹, 李桐林, 韩立国, 等. 基于时频分析与分数阶最优控制网络的地震数据噪声压制[J]. 地球物理学报, 2023, 66 (4):1718-1731.
[20] Shao D, Li T L, Han L G, et al. Noise suppression of seismic data based on time-frequency analysis and fractional order optimal control network[J]. Chinese Journal of Geophysics, 2019, 66 (4):1718-1731.
[21] 高尔兹奇克 A, 阿达姆奇克 A, 马林诺夫斯基 M. 利用曲线去噪技术对二维和三维地震数据的应用—实际考虑[J]. 应用地球物理学, 2014,105:78-94.
[21] Górszczyk A, Adamczyk A, Malinowski M. Application of curvelet denoising to 2D and 3D seismic data:Practical considerations[J]. Journal of Applied Geophysics, 2014,105:78-94.
[22] 赵娴, 李玥, 庄广海. 基于轮廓波变换的二维 TFPF 用于地震随机噪声衰减[J]. 应用地球物理学, 2016,129:158-166.
[22] Zhao X, Li Y, Zhuang G H. 2-D TFPF based on Contourlet transform for seismic random noise attenuation[J]. Journal of Applied Geophysics, 2016,129:158-166.
[23] 刘成明, 王德利, 王通, 等. 基于Shearlet变换的地震随机噪声压制[J]. 石油学报, 2014, 35(4):692-699.
doi: 10.7623/syxb201404009
[23] Liu C M, Wang D L, Wang T, et al. Random seismic noise attenuation based on the Shearlet transform[J]. Acta Petrolei Sinica, 2014, 35(4):692-699.
doi: 10.7623/syxb201404009
[24] 刘洋, Fomel Sergey, 刘财, 等. 高阶seislet变换及其在随机噪声消除中的应用[J]. 地球物理学报, 2009, 52(8):2142-2151.
[24] Liu Y, Sergey F, Liu C, et al. High-order seislet transform and its application of random noise attenuation[J]. Chinese Journal of Geophysics, 2009, 52(8):2142-2151.
[1] 郑伟, 田仁飞, 高雨含, 武斌. 最小均值交叉熵的时频峰值滤波在探地雷达信号去噪中的应用[J]. 物探与化探, 2025, 49(2): 404-410.
[2] 袁晓满, 李相文, 张洁, 但光箭, 卢忠沅, 韩重阳, 张磊, 许建洋. 基于改进广义S变换时频分析的“板状”断控油藏油柱高度预测[J]. 物探与化探, 2024, 48(3): 768-776.
[3] 薛野, 杨帆, 赵苏城, 蓝加达. 彭水地区残留向斜常压页岩气地震采集实践[J]. 物探与化探, 2023, 47(6): 1490-1499.
[4] 张金强. 基于正则化理论的时频分析方法及应用[J]. 物探与化探, 2023, 47(4): 965-974.
[5] 刘云祥, 司华陆, 乔海燕, 刘百川. 中国油气重磁勘探技术进步与展望[J]. 物探与化探, 2023, 47(3): 563-574.
[6] 薛野, 杨帆, 刘厚裕, 刘明, 赵苏城, 蓝加达. 彭水地区碳酸盐岩山地地表地震激发接收因素优选及效果[J]. 物探与化探, 2022, 46(3): 608-617.
[7] 王通, 刘建勋, 王兴宇, 李广才, 田密. Shearlet域尺度角度自适应深反射地震数据随机噪声压制方法[J]. 物探与化探, 2022, 46(3): 704-713.
[8] 段莹, 张高成, 谭雅丽. 泌阳凹陷高陡构造带地震成像[J]. 物探与化探, 2021, 45(4): 981-989.
[9] 邱庆良, 曹乃文, 白烨. 可控震源激发参数优选及应用效果[J]. 物探与化探, 2021, 45(3): 686-691.
[10] 黄苇, 周捷, 高利君, 王胜利, 严海滔. 基于同步挤压改进短时傅立叶变换的分频蚂蚁追踪在断裂识别中的应用[J]. 物探与化探, 2021, 45(2): 432-439.
[11] 张斯薇, 吴荣新, 韩子傲, 吴海波. 双边滤波在探地雷达数据去噪处理中的应用[J]. 物探与化探, 2021, 45(2): 496-501.
[12] 贺文, 蔡加铭, 宋志华, 李海银, 张浩, 黄孔智, 管延斌. 基于TK能量的峰值频率在沉积旋回划分中的应用[J]. 物探与化探, 2020, 44(6): 1336-1344.
[13] 聂伟东, 李雪英, 万乔升, 王福霖, 何谞超. 基于affine类时频分析的旋回性薄互层时频特征影响因素分析[J]. 物探与化探, 2020, 44(4): 763-769.
[14] 周锦钟, 张金海, 牛全兵, 张惠瑜, 王海峰, 朱波, 李丽, 尹思, 王娜. 柴达木盆地尖顶山地区低频可控震源“两宽一高”地震资料处理关键技术应用研究[J]. 物探与化探, 2020, 44(2): 313-320.
[15] 安鹏, 于志龙, 刘专, 马云海, 李丽, 刘凤轩. 敏感频率地震属性在薄层砂体预测中的应用——以松辽盆地肇源地区为例[J]. 物探与化探, 2020, 44(2): 321-328.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com