Please wait a minute...
E-mail Alert Rss
 
物探与化探  2021, Vol. 45 Issue (2): 432-439    DOI: 10.11720/wtyht.2021.1022
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
基于同步挤压改进短时傅立叶变换的分频蚂蚁追踪在断裂识别中的应用
黄苇1(), 周捷2, 高利君1, 王胜利1, 严海滔2
1.中国石油化工股份有限公司 西北油田分公司勘探开发研究院,新疆 乌鲁木齐 830011
2.成都理工大学 地球物理学院,四川 成都 610059
The application of frequency division ant tracking based on synchronous extrusion improvement of short time Fourier transform in crack detection
HUANG Wei1(), ZHOU Jie2, GAO Li-Jun1, WANG Sheng-Li1, YAN Hai-Tao2
1. Exploration and Development Research Institute,Northwest Oilfield Company,China Petroleum & Chemical Corporation,Urumqi 830011,China
2. School of Geophysics,Chengdu University of Technology,Chengdu 610059,China
全文: PDF(4303 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

在地球物理领域,时频分析方法在资料处理过程中占据着愈发重要的位置;运用分频属性检测断层、裂缝等应用广泛;因此,寻求更高精度的时频分析方法一直是地震信号处理领域所追求的目标。改进短时傅立叶变换方法由于窗函数的限制导致时频分析结果准确度不理想,为了更大限度地提升时频分辨率,对改进短时傅立叶变换后的时频谱进行挤压,发展了同步挤压改进短时傅立叶变换;根据合成信号结果可知,同步挤压改进短时傅立叶变换其时频汇聚程度更加明显,在刻画信号的时频特征上更有优势。理论表明,地震数据高频成分可以对微小的次生裂缝进行精确的雕刻,而蚂蚁追踪技术是检测裂缝、断层信息的有效手段。因此,本文基于高分辨的时频分析方法,并结合蚂蚁追踪技术对三维数据体进行裂缝预测,结果表明:该方法可以更好地勾勒出微小裂缝以及伴生褶皱,识别精度与传统蚂蚁追踪算法相比有了明显的提高,同时也证实了该方法在实际应用中可行且有效。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄苇
周捷
高利君
王胜利
严海滔
关键词 高分辨率时频分析微小裂缝次生裂缝蚂蚁追踪裂缝预测伴生褶皱    
Abstract

Since the application of the time-frequency analysis method in the field of geophysics,it has been favored by geophysicists and is widely used to detect faults and cracks.Therefore,seeking for time-frequency analysis methods with higher precision has become the goal pursued in the field of seismic signal processing.The improved short-time Fourier transform method has low accuracy of time-frequency analysis due to its own window function limitation.In order to improve the time-frequency resolution to a greater extent,the authors squeezed the time-spectrum values after the improved short-time Fourier transform,and developed synchronous extrusion improved short-time Fourier transform.The synthetic signal analysis results show that synchronous squeeze improved short-time Fourier transform has higher time-frequency convergence,and can more accurately characterize the time-frequency characteristics of the signal.The theory shows that the high-frequency components of seismic data can accurately engrave tiny secondary cracks,and ant tracking technology is an effective means to detect crack and fault information.Therefore,based on the high-resolution time-frequency analysis method and the ant tracking technology,the authors predicted the three-dimensional data volume of the South China Sea by cracks.The results show that the method can describe the micro-cracks and associated folds well,and the recognition accuracy is obviously improved as compared with the algorithm of the traditional ant tracking method,thus proving the effectiveness and practicability of the proposed method.

Key wordshigh resolution    time-frequency analysis    micro-cracks    secondary cracks    ant tracking    crack prediction    associated folds
收稿日期: 2020-01-15      出版日期: 2021-04-29
:  P631.4  
基金资助:国家科技重大专项课题“塔河深层碳酸盐岩内幕储层地震预测应用研究”(2017ZX05005004-008)
作者简介: 黄苇(1986-),女,助理研究员,硕士,2012年毕业于长江大学矿产普查与勘探专业,主要从事地球物理储层预测研究工作。Email: huangw999.@126.com
引用本文:   
黄苇, 周捷, 高利君, 王胜利, 严海滔. 基于同步挤压改进短时傅立叶变换的分频蚂蚁追踪在断裂识别中的应用[J]. 物探与化探, 2021, 45(2): 432-439.
HUANG Wei, ZHOU Jie, GAO Li-Jun, WANG Sheng-Li, YAN Hai-Tao. The application of frequency division ant tracking based on synchronous extrusion improvement of short time Fourier transform in crack detection. Geophysical and Geochemical Exploration, 2021, 45(2): 432-439.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2021.1022      或      https://www.wutanyuhuatan.com/CN/Y2021/V45/I2/432
Fig.1  基于同步挤压改进短时傅立叶变换分频蚂蚁追踪流程框架
Fig.2  合成信号及利用不同分析方法得到的时频谱
a—原始合成信号;b—短时傅立叶变换的时频谱;c—改进短时傅立叶变换的时频谱;d—同步挤压改进短时傅立叶变换的时频谱
Fig.3  加噪信号及利用不同分析方法得到的时频谱
a—原始加噪信号;b—短时傅立叶变换的时频谱;c—改进短时傅立叶变换的时频谱;d—同步挤压改进短时傅立叶变换的时频谱
Fig.4  原始地震记录及单频剖面
a—原始地震记录;b—改进短时傅立叶变换单频剖面;c—单道循环挤压改进短时傅立叶变换单频频谱;d—多道循环同步挤压改进短时傅立叶变换单频剖面
Fig.5  井旁地震道及利用不同分析方法得到的时频谱
a—井旁单道地震记录;b—短时傅立叶变换得到的时频谱;c—同步挤压改进短时傅立叶变换得到的时频谱
Fig.6  振幅沿层切片
Fig.7  全频带沿层蚂蚁体切片
Fig.8  25 Hz沿层蚂蚁体切片
Fig.9  55 Hz沿层蚂蚁体切片
[1] Bahorich M, Farmer S. 3D seismic discontinuity for faults and stratigraphic features:the coherence cube[C] //SEG Technical Program Expanded Abstracts, 1995,14:1053-1058.
[2] Satinder C, Marfurt K J. Seismic attributes forprospect identification and reservoir characterization[C] //SEG Geophysical Developments Series No.11, 2008.
[3] Marfurt K J, Sudhakar V, Gersztenkorn A, et al. Coherency calculations in the presence of structural dip[J]. Geophysics, 1999,64(1):104-111.
doi: 10.1190/1.1444508
[4] Marfurt K J, Scheet R M, Sharp J A, et al. Suppression of the acquisition footprint for seismic sequence attribute mapping[J]. Geophysics, 1998,63(3):1024-1035.
doi: 10.1190/1.1444380
[5] 王西文, 杨孔庆, 刘全新, 等. 基于小波变换的地震相干体算法的应用[J]. 石油地球物理勘探, 2002,37(4):328-331.
[5] Wang X W, Yang K Q, Liu Q X, et al. Application of seismic coherence algorithm based on wavelet transform[J]. Oil Geophysical Prospecting, 2002,37(4):328-331.
[6] Dorigo M, Maniezzo V, Colorni A. Ant system:optimization by a colony of cooperating agents[J]. IEEE Transactions on Systems Man and Cybernetics:Part B, 1996,26(1):1-13.
doi: 10.1109/TSMCB.3477
[7] Partyka G, Gridley J, Lopez J. Interpretational applications of spectral decomposition in reservoir characterization[J]. Leading Edge, 1999.
[8] Zeng H L, John A, Katherine G J. Frequency-dependent seismic stratigraphy[J]. SEG Technical Program Expanded Abstracts, 2009,28(1):1097-1101.
[9] Daubechies I, Lu J, Wu H T. Synchrosqueezed wavelet transforms:an empirical mode decomposition-like tool[J]. Appl. Comput. Harmon Anal., 2011,30(2):243-261.
doi: 10.1016/j.acha.2010.08.002
[10] Yu G, Yu M, Xu C. Synchroextracting,transform[J]. IEEE Transactions on Industrial Electronics, 2017,64(10):8042-8054.
doi: 10.1109/TIE.2017.2696503
[11] 庄益明, 张兴平, 王琦, 等. 基于构造导向滤波下的蚂蚁追踪技术的应用与实践[J]. 煤炭技术, 2018,37(9):150-152.
[11] Zhuang Y M, Zhang X P, Wang Q, et al. Application and practice of ant tracking technology based on structure-oriented filtering[J]. Coal Technology, 2018,37(9):150-152.
[12] 陈志刚, 吴瑞坤, 孙星, 等. 基于反射强度交流分量滤波的蚂蚁追踪断层识别技术改进及应用[J]. 地球物理学进展, 2017,32(5):1973-1977.
[12] Chen Z G, Wu R K, Sun X, et al. Improvement and application of ant tracking fault recognition technology based on reflected intensity AC component filtering[J]. Progress in Geophysics, 2017,32(5):1973-1977.
[13] Fehmers G, Höcker C. Fast structural interpretation with structure-oriented filtering[J]. Geophysics, 2003,68(4):1286.
doi: 10.1190/1.1598121
[14] 王清振, 张金淼, 姜秀娣, 等. 利用梯度结构张量检测盐丘与断层[J]. 石油地球物理勘探, 2018,53(4):826-831,656.
[14] Wang Q Z, Zhang J M, Jiang X T, et al. Detecting salt domes and faults by using gradient tensor[J]. Oil Geophysical Prospecting, 2018,53(4):826-831.
[15] 尹川, 杜向东, 赵汝敏, 等. 小波分频倾角相干在复杂断裂解释中的应用[J]. 石油地球物理勘探, 2015,50(2):346-350.
[15] Yin C, Du X D, Zhao R M, et al. Application of wavelet cross-frequency dip coherence in complex fracture interpretation[J]. Oil Geophysical Prospecting, 2015,50(2):346-350.
[16] 胡滨, 张世鑫. 蚂蚁追踪技术在断层解释中的应用[J]. 中国石油和化工标准与质量, 2018,38(9):175-176,178.
[16] Hu B, Zhang S X. Application of ant tracking technology in fault interpretation[J]. China Petroleum and Chemical Industry Standards and Quality, 2018,38(9):175-176,178.
[17] 张瑞, 文晓涛, 李世凯, 等. 分频蚂蚁追踪在识别深层小断层中的应用[J]. 地球物理学进展, 2017,32(1):350-356.
[17] Zhang R, Wen X T, Li S K, et al. Application of frequency division ant tracking in identifying deep small faults[J]. Progress in Geophysics, 2017,32(1):350-356.
[18] 袁晓宇, 李映涛, 叶宁, 等. 基于频谱分解的蚂蚁追踪裂缝检测技术在玉北地区的应用研究[J]. 石油地球物理勘探, 2015,50(4):665-671.
doi: 10.13810/j.cnki.issn.1000-7210.2015.04.013
[18] Yuan X Y, Li Y T, Ye N, et al. Application of ant tracking crack detection technology based on spectral decomposition in Yubei area[J]. Oil Geophysical Prospecting, 2015,50(4):665-671.
doi: 10.13810/j.cnki.issn.1000-7210.2015.04.013
[19] 王珂, 张惠良, 张荣虎, 等. 塔里木盆地克深2气田储层构造裂缝多方法综合评价[J]. 石油学报, 2015,36(6):673-687.
[19] Wang K, Zhang H L, Zhang R H, et al. Multi-method comprehensive evaluation of reservoir structural fractures in Keshen 2 gas field,Tarim Basin[J]. Acta Petrolei Sinica, 2015,36(6):673-687.
[1] 肖关华, 张伟, 陈恒春, 卓武, 王艳君, 任丽莹. 浅层地震技术在济南地下空间探测中的应用[J]. 物探与化探, 2022, 46(1): 96-103.
[2] 谢清惠, 蒋立伟, 赵春段, 王仲达, 唐协华, 罗瑀峰. 提高蚂蚁追踪裂缝预测精度的应用研究[J]. 物探与化探, 2021, 45(5): 1295-1302.
[3] 邓儒炳, 阎建国, 陈琪, 宋鑫磊. 一种基于连续补偿函数的时变增益限反Q滤波方法[J]. 物探与化探, 2021, 45(3): 702-711.
[4] 马继涛, 廖震, 齐娇, 迟麟. 基于迭代阈值收缩的高分辨率Radon变换方法效果对比[J]. 物探与化探, 2021, 45(2): 413-422.
[5] 贺文, 蔡加铭, 宋志华, 李海银, 张浩, 黄孔智, 管延斌. 基于TK能量的峰值频率在沉积旋回划分中的应用[J]. 物探与化探, 2020, 44(6): 1336-1344.
[6] 聂伟东, 李雪英, 万乔升, 王福霖, 何谞超. 基于affine类时频分析的旋回性薄互层时频特征影响因素分析[J]. 物探与化探, 2020, 44(4): 763-769.
[7] 安鹏, 于志龙, 刘专, 马云海, 李丽, 刘凤轩. 敏感频率地震属性在薄层砂体预测中的应用——以松辽盆地肇源地区为例[J]. 物探与化探, 2020, 44(2): 321-328.
[8] 章雄, 张本健, 梁虹, 徐敏, 张洞君, 曾旖. 波形指示叠前地震反演方法在致密含油薄砂层预测中的应用[J]. 物探与化探, 2018, 42(3): 545-554.
[9] 韩翀, 陈明江, 赵辉, 曹博超, 李金玺, 尹晓贺. 现代体属性分析技术在风化壳气藏勘探中的应用——以苏里格气田桃7区块马五13段为例[J]. 物探与化探, 2016, 40(3): 445-451.
[10] 党青宁, 崔永福, 陈猛, 赵锐锐, 刘伟明, 李勇军. OVT域叠前裂缝预测技术——以塔里木盆地塔中ZG地区奥陶系碳酸盐岩为例[J]. 物探与化探, 2016, 40(2): 398-404.
[11] 屈进红, 周锡华, 耿圣博, 段乐颖, 邓肖丹. 直升机GT-2A航空重力仪减振系统振动分析[J]. 物探与化探, 2015, 39(S1): 105-112.
[12] 李金丽, 李振春, 管路平, 邓文志, 孙小东. 地震波衰减及补偿方法[J]. 物探与化探, 2015, 39(3): 456-465.
[13] 孙瑞莹, 印兴耀, 王保丽, 张广智. 基于Metropolis抽样的弹性阻抗随机反演[J]. 物探与化探, 2015, 39(1): 203-210.
[14] 张振波, 轩义华. 高分辨率抛物线拉冬变换多次波压制技术[J]. 物探与化探, 2014, 38(5): 981-988.
[15] 王丹, 贾跃玮, 魏水建, 郑文波. 新场须四段叠后裂缝综合预测[J]. 物探与化探, 2014, 38(5): 1038-1044.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com