Please wait a minute...
E-mail Alert Rss
 
物探与化探  2025, Vol. 49 Issue (4): 896-901    DOI: 10.11720/wtyht.2025.1277
  方法研究信息处理仪器研制 本期目录 | 过刊浏览 | 高级检索 |
不规则测线视电阻率数据的3D反演方法
郭军旗1(), 范本峰2, 鲁恺3(), 王鹏3, 翟好杰3
1.库车市科兴煤炭实业有限责任公司, 新疆 阿克苏 842008
2.新疆维吾尔自治区地质矿产勘查开发局第九地质大队, 新疆 乌鲁木齐 830000
3.西安科技大学 地质与环境学院, 陕西 西安 710000
A 3D inversion method for apparent resistivity data along irregular survey lines under complex terrain
GUO Jun-Qi1(), FAN Ben-Feng2, LU Kai3(), WANG Peng3, ZHAI Hao-Jie3
1. Kuche Kexing Coal Industry Co., Ltd., Aksu 842008, China
2. No. 9 Geological Team of Bureau of Geology and Mineral Resources of Xinjiang Uygur Autonomous Region, Urumqi 830000, China
3 Xi'an University of Science and Technology, College of Geology and Environment, Xi'an 710000, China
全文: PDF(3037 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

高密度电阻率法已成为滑坡结构调查的主要地球物理方法之一,但是受滑坡复杂地形、地表崩积物的影响,实际工作中测线难以沿直线规整布置,导致视电阻率计算结果出现偏差。为了最大程度降低不规则测线对最终结果的影响,笔者提出了一种实测数据的3D反演方案,通过寻找完全测线最小包围面积矩形,最小化3D网格剖分;通过增大测线垂直方向的正则化参数,抑制模型参数在垂直方向上的变化。数值模拟结果表明,相比传统的2D反演方案,本研究提出的3D反演方案可以显著提升滑带的识别精度。白水河滑坡的实测结果验证了该方法的有效性。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭军旗
范本峰
鲁恺
王鹏
翟好杰
关键词 高密度电阻率法复杂地形不规则测线3D反演滑坡    
Abstract

The electrical resistivity tomography (ERT) method has become the primary geophysical technique for landslide structure investigation. However, the complex terrain of landslides and the impacts of collapsed surface features render it challenging to arrange survey lines orderly along a straight line in practice. This leads to deviations in the calculations of apparent resistivity. To minimize the impacts of irregular survey lines on the final results, this study developed a scheme for the 3D inversion of measured data. Specifically, this scheme minimized 3D grid subdivision by identifying the rectangle enclosing the minimum area of complete survey lines. Meanwhile, this scheme suppressed the changes in model parameters in the vertical direction by increasing the regularization parameters along the vertical direction of the survey lines. Numerical simulation results indicate that, compared to the traditional 2D inversion scheme, the proposed 3D inversion scheme can significantly improve the identification accuracy of the sliding zone. The measured results of the Baishuihe landslide have verified the effectiveness of the proposed method.

Key wordselectrical resistivity tomography    complex terrain    irregular survey line    3D inversion    landslide
收稿日期: 2024-06-26      修回日期: 2024-10-12      出版日期: 2025-08-20
ZTFLH:  P631  
基金资助:陕西省自然科学基础研究计划(2024JC-YBQN-0291);陕西省自然科学基础研究计划(2024JC-YBMS-200)
通讯作者: 鲁恺(1992-),男,2022年毕业于中国地质大学(武汉),主要从事电磁法勘探正反演技术及应用研究工作。Email:lukai@xust.edu.cn
作者简介: 郭军旗(1985-),男,2011年毕业于河南理工大学,主要从事电磁法勘探与矿井防治水工作。Email:guojunqi_kx@126.com
引用本文:   
郭军旗, 范本峰, 鲁恺, 王鹏, 翟好杰. 不规则测线视电阻率数据的3D反演方法[J]. 物探与化探, 2025, 49(4): 896-901.
GUO Jun-Qi, FAN Ben-Feng, LU Kai, WANG Peng, ZHAI Hao-Jie. A 3D inversion method for apparent resistivity data along irregular survey lines under complex terrain. Geophysical and Geochemical Exploration, 2025, 49(4): 896-901.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2025.1277      或      https://www.wutanyuhuatan.com/CN/Y2025/V49/I4/896
Fig.1  不规则测线视电阻率数据的3D反演技术流程示意
a—投影坐标系下的电极分布;b—最小包围面积矩形与转换后的坐标系;c—转换坐标后的网格剖分;d—最大化y方向正则化参数后3D反演得到的电阻率模型;e—提取到的测线底部的电阻率数据;f—将e中坐标转为2D测线长度与高程的电阻率断面
Fig.2  滑坡体数值模型与不规则测线示意
Fig.3  数值模拟结果
a—测线底部电阻率模型,其中蓝色区域为30 Ω·m,红色为100 Ω·m;b—将3D正演视电阻率数据转为2D断面显示;c—平滑约束2D反演断面,其中黑色线条为滑带位置在反演断面上投影位置;d—本研究中3D反演方法得到的电阻率断面
Fig.4  白水河滑坡地表地形与实测测线位置
Fig.5  不规则测线实测数据反演结果
a—ERT-1测线结果;b—ERT-2测线结果
[1] 杨振威, 严加永, 刘彦, 等. 高密度电阻率法研究进展[J]. 地质与勘探, 2012, 48(5): 969-978.
[1] Yang Z W, Yan J Y, Liu Y, et al. Research progresses of the high-density resistivity method[J]. Geology and Exploration, 2012, 48(5): 969-978.
[2] 底青云, 倪大来, 王若, 等. 高密度电阻率成像[J]. 地球物理学进展, 2003, 18(2): 323-326.
[2] Di Q Y, Ni D L, Wang R, et al. High-density resistivity image[J]. Progress in Geophysics, 2003, 18(2): 323-326.
[3] Ducut J D, Alipio M, Go P J, et al. A review of electrical resistivity tomography applications in underground imaging and object detection[J]. Displays, 2022, 73: 102208.
[4] 郭秀军, 贾永刚, 黄潇雨, 等. 利用高密度电阻率法确定滑坡面研究[J]. 岩石力学与工程学报, 2004, 23(10): 1662-1669.
[4] Guo X J, Jia Y G, Huang X Y, et al. Application of multi-electrodes electrical method to detection of slide-face position[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(10): 1662-1669.
[5] 李富, 周洪福, 葛华. 不同类型滑坡体的高密度电阻率法勘察电性特征[J]. 物探与化探, 2019, 43(1): 215-221.
[5] Li F, Zhou H F, Ge H. Electrical characteristics of different types of landslide bodies investigated by high-density electrical method[J]. Geophysical and Geochemical Exploration, 2019, 43(1): 215-221.
[6] 刘栋, 张帆宇, 陈立, 等. 高密度电法在黄土滑坡结构探测与三维建模中的应用[J]. 地球物理学进展, 2022, 37(4): 1742-1748.
[6] Liu D, Zhang F Y, Chen L, et al. Application of high-density electrical method in detecting and 3D modeling of loess landslide[J]. Progress in Geophysics, 2022, 37(4): 1742-1748.
[7] 高明亮, 于生宝, 郑建波, 等. PSBP在高密度电阻率法二维反演中的应用[J]. 吉林大学学报: 工学版, 2015, 45(6): 2026-2033.
[7] Gao M L, Yu S B, Zheng J B, et al. Application of PSBP method in high-density two-dimensional resistivity inversion[J]. Journal of Jilin University: Engineering and Technology Edition, 2015, 45(6): 2026-2033.
[8] 张卫国, 匡伶俐. 高密度电阻率法二维层析成像研究与应用[J]. 煤田地质与勘探, 2008, 36(2): 55-58.
[8] Zhang W G, Kuang L L. Research and application of two-dimensional high density resistivity tomography[J]. Coal Geology & Exploration, 2008, 36(2): 55-58.
[9] Arjwech R, Phothaworn T, Chaisuriya S, et al. Evaluation of slope susceptibility using 2D electrical resistivity tomography supplemented with spatial resistivity change[J]. Geotechnical and Geological Engineering, 2023, 41(7): 4023-4039.
[10] Cardarelli E, Fischanger F. 2D data modelling by electrical resistivity tomography for complex subsurface geology[J]. Geophysical Prospecting, 2006, 54(2): 121-133.
[11] Yuan Y, Qiang J K, Tang J T, et al. 2.5D direct-current resistivity forward modelling and inversion by finite-element-infinite-element coupled method[J]. Geophysical Prospecting, 2016, 64(3): 767-779.
[12] 李忠平. 基于高密度电法温纳装置的三维电阻率反演应用[J]. 地球物理学进展, 2020, 35(3): 970-975.
[12] Li Z P. Application of 3D resistivity inversion based on Winner device of high density electricity method[J]. Progress in Geophysics, 2020, 35(3): 970-975.
[13] 戴前伟, 肖波, 冯德山, 等. 基于二维高密度电阻率勘探数据的三维反演及应用[J]. 中南大学学报: 自然科学版, 2012, 43(1): 293-300.
[13] Dai Q W, Xiao B, Feng D S, et al. 3D inversion of high density resistivity method based on 2D exploration data and its application[J]. Journal of Central South University: Science and Technology, 2012, 43(1): 293-300.
[14] 王新宇, 王程, 毛玉蓉, 等. 基于混合网格有限元的直流电阻率法三维正演研究[J]. 煤田地质与勘探, 2022, 50(5): 136-143.
[14] Wang X Y, Wang C, Mao Y R, et al. 3D forward modeling of DC resistivity method based on finite element with mixed grid[J]. Coal Geology & Exploration, 2022, 50(5): 136-143.
[15] Shin Y, Shin S, Cho S J, et al. Application of 3D electrical resistivity tomography in the yeoncheon titanomagnetite deposit, south Korea[J]. Minerals, 2021, 11(6): 563.
[16] Rupesh, Tiwari P, Sharma S P. High-resolution quasi-3D electric resistivity tomography for deciphering groundwater potential zones in lateritic terrain[J]. Natural Resources Research, 2021, 30(5): 3339-3353.
doi: 10.1007/s11053-021-09888-4
[17] Turarova M K, Mirgalikyzy T, Mukanova B G, et al. Evaluation of the 3D topographic effect of homogeneous and inhomogeneous media on the results of 2D inversion of electrical resistivity tomography data[J]. Modelling and Simulation in Engineering, 2022, 2022(1): 5196686.
[18] 黄凯. GNSS-RTK物探测量独立工程坐标系统的建立[J]. 测绘与空间地理信息, 2022, 45(5): 77-79.
[18] Huang K. The construction of independent engineering coordinate system in GNSS-RTK geophysical measurements[J]. Geomatics & Spatial Information Technology, 2022, 45(5): 77-79.
[19] Akl S. Inherently parallel geometric problems[R]. Technical Report, 2004.
[20] Loke M H, Papadopoulos N, Wilkinson P B, et al. The inversion of data from very large three-dimensional electrical resistivity tomography mobile surveys[J]. Geophysical Prospecting, 2020, 68(8): 2579-2597.
doi: 10.1111/1365-2478.13008
[21] Loke M H, Wilkinson P B, Kuras O, et al. The use of a semi-structured finite-element mesh in 3-D resistivity inversion[J]. Geophysical Prospecting, 2022, 70(9): 1580-1601.
[22] 卢书强, 易庆林, 易武, 等. 库水下降作用下滑坡动态变形机理分析——以三峡库区白水河滑坡为例[J]. 工程地质学报, 2014, 22(5): 869-875.
[22] Lu S Q, Yi Q L, Yi W, et al. Study on dynamic deformation mechanism of landslide in drawdown of reservoir water level:Take Baishuihe landslide in Three Gorges Reservoir area for example[J]. Journal of Engineering Geology, 2014, 22(5): 869-875.
[1] 姜国庆, 郝社锋, 喻永祥, 杜建国, 李明, 尚通晓, 宋京雷. 基于三维电阻率反演的滑坡地质灾害调查——以无锡市雪浪山景区滑坡为例[J]. 物探与化探, 2024, 48(6): 1720-1729.
[2] 刘洪华, 张卉, 王汝杰, 于鹏, 秦升强, 李文宇, 车荣祺. 滨海城市地质结构电阻率法三维模拟与应用[J]. 物探与化探, 2024, 48(4): 1037-1044.
[3] 陈永凌, 蒋首进, 谢丹, 王嘉, 何志雄, 刘澄. 阿里地区日土县综合物探方法找水研究[J]. 物探与化探, 2024, 48(3): 668-674.
[4] 赵自豪, 李鹏慧, 吕海建, 康森. 露天矿台阶对高密度电法勘探影响的实验研究[J]. 物探与化探, 2024, 48(2): 565-572.
[5] 宋涛, 包怡, 赵松, 吴建峰, 许元顺, 涂海峰. 井—电联合勘探与三维地质建模在某填埋场环境调查中的应用[J]. 物探与化探, 2024, 48(1): 272-280.
[6] 刘湘浩, 刘四新, 胡铭奇, 孙中秋, 王千. 基于OMAGA-BP算法的高密度电阻率法反演研究[J]. 物探与化探, 2023, 47(6): 1519-1527.
[7] 罗术, 陈争玉, 蓝宇骋, 刘阳飞, 段明杰. 等值反磁通瞬变电磁法探测滑坡堆积体的应用[J]. 物探与化探, 2023, 47(2): 523-529.
[8] 苏永军, 曹占宁, 赵更新, 胡祥云, 范剑, 张竞, 范翠松, 黄忠峰. 高密度电阻率法在雄安新区浅表古河道精细化探测中的应用研究[J]. 物探与化探, 2023, 47(1): 272-278.
[9] 孙建宏, 程立群, 赵伟锋, 任改娟, 孙冠石, 王瑞鹏, 裴明星. 海水入侵区视电阻率与氯离子浓度关系研究——以秦皇岛地区为例[J]. 物探与化探, 2022, 46(2): 518-524.
[10] 何胜, 马文鑫, 甘斌. 地面核磁共振法与高密度电阻率法在西藏盐湖卤水钾矿勘查中的应用[J]. 物探与化探, 2021, 45(6): 1409-1415.
[11] 刘伟, 黄韬, 王庭勇, 刘怡, 张继, 刘文涛, 张琦斌, 李强. 综合物探方法在城市隐伏断裂探测中的应用[J]. 物探与化探, 2021, 45(4): 1077-1087.
[12] 王文杰, 郝一, 薄海军, 王海龙, 徐浩清, 李永利, 毛磊, 刘永新, 袁帅. 包头市固阳县矿集区高密度电阻率法找水定井实例分析[J]. 物探与化探, 2021, 45(4): 869-881.
[13] 杨利普, 徐志萍, 徐顺强, 刘明军, 姜磊, 熊伟, 贺为民. 薄壁断裂峪河口至方庄段电性结构特征[J]. 物探与化探, 2020, 44(6): 1301-1305.
[14] 许艺煌, 黄真萍, 程志伟, 陈少博, 陈振明. 高密度电阻率法在弃渣堆积体分布调查中的应用[J]. 物探与化探, 2020, 44(2): 435-440.
[15] 姚纪华, 罗仕军, 宋文杰, 刘媛, 赵文刚, 吕慧珠. 综合物探在水库渗漏探测中的应用[J]. 物探与化探, 2020, 44(2): 456-462.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com