Please wait a minute...
E-mail Alert Rss
 
物探与化探  2020, Vol. 44 Issue (4): 763-769    DOI: 10.11720/wtyht.2020.1406
  方法研究·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
基于affine类时频分析的旋回性薄互层时频特征影响因素分析
聂伟东1(), 李雪英1,2(), 万乔升1, 王福霖1, 何谞超3
1.东北石油大学 地球科学学院,黑龙江 大庆 163318
2.黑龙江省油气藏形成机理与资源评价重点实验室,黑龙江 大庆 163318
3.大庆油田有限责任公司第七采油厂,黑龙江 大庆 163517
A time-frequency feature analysis of cyclic thin interbeds based on time-frequency analysis of affine class
NIE Wei-Dong1(), LI Xue-Ying1,2(), WAN Qiao-Sheng1, WANG Fu-Lin1, HE Xu-Chao3
1. College of Earth Science,Northeast Petroleum University,Daqing 163318,China
2. Heilongjiang Oil and Gas Reservoir Forming Mechanism and Resource Evaluation Key Laboratory,Northeast Petroleum University,Daqing 163318,China
3. No. 7 Oil Production Company, Daqing Oilfield Company Limited,Daqing 163517,China
全文: PDF(2704 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

affine类时频分析方法具有模糊瞬时频谱变化细节,突出主要频率变化趋势的特点,具有较好的旋回判别能力,因而被学者用于旋回性薄互层类型判别当中,研究发现,旋回性薄互层时域波形均有向薄层方向波形密集,厚层方向波形稀疏的特点,但其稳定性差,易受外界干扰影响。由仿射类时频分布得到的时频谱与沉积旋回模式具有一一对应关系,不同模式旋回薄互层均有向层厚减薄方向的升频特点,目前关于旋回性薄互层时频特征影响因素的研究很少,厘清这些因素对旋回判断准则的影响有重要的意义。基于以上考虑,本文以正旋回模型为基础,从小层厚度突变、波阻抗大小、噪声影响、地震资料主频大小、地层黏性吸收作用等5个方面对旋回判别的影响进行了探讨。首先根据波动理论,利用深度域相移法对不同影响因素条件的旋回性薄互层进行正演模拟,分别抽取零偏移距道集进行仿射类时频分析,对比理想情况的旋回性薄互层时频特征差异。结果表明:仿射类时频分布判别沉积旋回抗噪能力强,受薄互层中小层厚度轻微突变的影响小;波阻抗的变化主要影响时频谱时间方向能量分布,对频率方向能量分布影响甚微;地震资料主频变化对时频特征的影响较小,随着地震资料主频的增加,旋回的趋势更加明显;地层黏性吸收作用对该方法判别的准确度影响也较小,时频特征稳定。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
聂伟东
李雪英
万乔升
王福霖
何谞超
关键词 仿射类时频分析薄互层旋回性正演模拟黏性吸收    
Abstract

The affine time-frequency analysis method has the characteristics of fuzzy instantaneous spectral changes,highlights the characteristics of the main frequency variation trend,and has a good capability for determining the degree of cycle.Therefore,it has been used by experts in the classification of cyclic thin interbed types.The layer time domain waveforms are characterized by dense waveforms toward the thin layer and sparse waveforms in the thick layer direction,but their poor stability is susceptible to external interference.The time-spectrum obtained from the affine class time-frequency distribution has a one-to-one correspondence with the sedimentary cycle pattern.The frequency rising characteristics of thin interbeds in different model cycles are in the direction of thickness thinning.As the study of the influencing factors of cyclic interbeds characteristics in the current time is very insufficient,it is important to clarify the influence of these factors on the criterion of the cycle.Based on the above considerations,this paper discusses the influence of the sudden change in the thickness of the small layer,the size of wave impedance,the influence of noise,the size of seismic data frequency and the viscous absorption of the formation on the cycle discrimination based on the positive cycle model.Firstly,according to the wave theory,the depth-domain phase-shift method is used to make forward simulation of the cyclic thin interbeds with different influencing factors,and zero-offset gathers is extracted for affine time-frequency analysis;after that,the differences of time-frequency characteristics of cyclic thin interbeds are compared under ideal conditions.The results show that affine time-frequency distribution has a strong capability for discriminating sedimentary cycles against noise,and is less affected by slight sudden changes in the thickness of thin interbeds,that the variation of wave impedance mainly affects the temporal energy distribution of time-frequency spectrum,but has little effect on the energy distribution of frequency-direction,and that the variation of main frequency of seismic data has little effect on the time-frequency characteristics,whereas the variation of main frequency of seismic data has little effect on the time-frequency characteristics.With the increase of main frequency of wave,the trend of cycle is more obvious,the influence of stratigraphic viscous absorption on the accuracy of this method is also small,and the time-frequency characteristics are stable.

Key wordsaffine class    cyclic thin interbeds    time-frequency analysis    forward modeling    viscous absorption
收稿日期: 2019-08-23      出版日期: 2020-08-28
:  P631.4  
基金资助:中国博士后科学基金(2013M541336)
通讯作者: 李雪英
作者简介: 聂伟东(1994-),男,2017年获东北石油大学勘查技术与工程工学学士学位,目前在东北石油大学攻读地球探测与信息技术硕士学位,研究方向为地震数据处理。Email:1581054447@qq.com
引用本文:   
聂伟东, 李雪英, 万乔升, 王福霖, 何谞超. 基于affine类时频分析的旋回性薄互层时频特征影响因素分析[J]. 物探与化探, 2020, 44(4): 763-769.
NIE Wei-Dong, LI Xue-Ying, WAN Qiao-Sheng, WANG Fu-Lin, HE Xu-Chao. A time-frequency feature analysis of cyclic thin interbeds based on time-frequency analysis of affine class. Geophysical and Geochemical Exploration, 2020, 44(4): 763-769.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2020.1406      或      https://www.wutanyuhuatan.com/CN/Y2020/V44/I4/763
Fig.1  典型的正旋回模式仿射类时频分布
Fig.2  正旋回背景下内部某小层厚度随机变化时域波形及时频分布
Fig.3  厚度相同改变反射系数后时域波形及时频分布
Fig.4  不同时刻归一化瞬时频谱
Fig.5  不同噪声强度的时域波形及时频分布
Fig.6  不同主频地震资料的时域波形及时频分布
Fig.7  不同黏性地层的时域波形及时频分布
[1] 陶明华, 韩春元, 陶亮. 旋回性沉积序列的形成机理分析[J]. 沉积学报, 2007,25(4):505-510.
[1] Tao M H, Han C Y, Tao L. Analysis on the formational mechanism of depositional cycles[J]. Acta Sedimentologica Sinica, 2007,25(4):505-510.
[2] 陈代钊. 旋回地层——一个正在发展中的理论[J]. 第四纪研究, 2000,20(2):186-195.
[2] Chen D Z. Cyclostratigraphy: a developing theory[J]. Quaternary Sciences, 2000,20(2):186-195.
[3] 张军华, 王永刚, 杨国权, 等. 地震旋回体的概念及应用[J]. 石油地球物理勘探, 2003,38(3):281-284.
[3] Zhang J H, Wang Y G, Yang G Q, et al. Concept and application of seismic cycle characteristics.[J]. Oil Geophysical Prospecting, 2003,38(3):281-284.
[4] 刘传虎, 刘富贵, 李卫忠. 时频分析方法在储层预测中的应用[J]. 石油地球物理勘探, 1996,31(s1):11-20.
[4] Liu C H, Liu F G, Li W Z. Time frequency analysis method and its application in reservoir predicting[J]. Oil Geophysical Prospecting, 1996,31(s1):11-20.
[5] 崔凤林, 管叶君. 时频分析——薄互层结构研究的新途径[J]. 石油物探, 1992,31(2):1-15.
[5] Cui F L, Guan Y J. Time-frequency analysis—A new way for thin interbeds examination[J]. Geophysical Prospecting for Petroleum, 1992,31(2):1-15.
[6] Jr R M M, Wagoner J C V. High-frequency sequences and their stacking patterns:sequence-stratigraphic evidence of high-frequency eustatic cycles[J]. Sedimentary Geology, 1991,70(2-4):131-160.
[7] 陈斌. 时频分析及在地震信号分析中的应用研究[D]. 成都:成都理工大学, 2007.
[7] Chen B. Time-frequency analysis and its implication in seismic signal[D]. Chengdu:Chengdu University of Technology, 2007.
[8] 崔风林, 谢春来, 付雷, 等. 小波变换时频能量谱技术在地震地层划分中的应用[J]. 长春科技大学学报, 2000,30(4):397-399.
[8] Cui F L, Xie C L, Fu L, et al. The time-frequency spectrum of wavelet transformand its application in seismic sequence identification[J]. Journal of Changchun University of Science and Technology, 2000,30(4):397-399.
[9] 雷克辉, 朱广生, 毛宁波, 等. 在小波时频域中研究沉积旋回[J]. 石油地球物理勘探, 1998,33(s1):72-78.
[9] Lei K H, Zhu G S, Mao N B, et al. Study of sedimentary cycles in time-frequency domain of wavelet[J]. Oil Geophysical Prospecting, 1998,33(s1):72-78.
[10] Stockwell R G, Mansinha L, Lowe R P. Localization of the complex spectrum:the Stransform[J]. IEEE transactions on Signal Processing, 1996,17(6):998-1001.
[11] 刘喜武, 刘洪, 李幼铭, 等. 基于广义S变换研究地震地层特征[J]. 地球物理学进展, 2006,21(2):440-451.
[11] Liu X W, Liu H, Li Y M, et al. Study on characteristics of seismic stratigraphyby generalized S-transform[J]. Progress in Geophysics, 2006,21(2):440-451.
[12] 魏学强, 李辉峰, 杨超. 基于广义S变换的沉积旋回分析方法研究[J]. 西安石油大学学报:自然科学版, 2013,28(4):35-40.
[12] Wei X Q, Li H F, Yang C. Study of sedimentary cycle analysis method based on generalized Stransform[J]. Journal of Xi'an Shiyou University:Natural Science Edition, 2013,28(4):35-40.
[13] 孙兴刚, 赵晓, 刘浩杰, 等. 希尔伯特——黄变换时频分析在沉积旋回划分中的应用[J]. 油气地质与采收率, 2012,19(6):58-60.
[13] Sun X G, Zhao X, Liu H J, et al. Application of Hilbert-Huang transform in sedimentary cycles classification[J]. Petroleum Geology and Recovery Efficiency, 2012,19(6):58-60.
[14] 刘喜武, 张宁, 勾永峰, 等. 地震勘探信号时频分析方法对比与应用分析[J]. 地球物理学进展, 2008,23(3):743-753.
[14] Liu X W, Zhang N, Gou Y F, et al. The comparison and application analysis of time-frequency analysis method to seismic signals[J]. Progress in Geophysics, 2008,23(3):743-753.
[15] 李振春, 刁瑞, 韩文功, 等. 线性时频分析方法综述[J]. 勘探地球物理进展, 2010,33(4):239-246.
[15] Li Z C, Diao R, Han W G, et al. Review on linear time-frequency analysis methods[J]. Progress in Exploration Geophysics, 2010,33(4):239-246.
[16] 田亚军, 李雪英, 程云, 等. 几种时频分析方法在沉积旋回判别效果上的对比[J]. 数学的实践与认识, 2018,48(4):206-214.
[16] Tian Y J, Li X Y, Cheng Y, et al. Comparison result of several time-frequency analysis methods on identifying sedimentary cycle[J]. Mathematics in Practice and Theory, 2018,48(4):206-214.
[17] 陈雨红, 杨长春, 曹齐放, 等. 几种时频分析方法比较[J]. 地球物理学进展, 2006,21(4):1180-1185.
[17] Chen Y H, Yang C C, Cao Q F, et al. The comparison of some time frequency analysis methods[J]. Progress in Geophysics, 2006,21(4):1180-1185.
[18] 初孟, 邱天爽. 时频分布中交叉项抑制的研究进展[J]. 世界科技研究与发展, 2005,27(4):14-20.
[18] Chu M, Qiu T S. Development of suppressing crossterms of time-frequency distribution[J]. World Sci-Tech R&D, 2005,27(4):14-20.
[19] 邹红星, 周小波, 李衍达. 时频分析:回溯与前瞻[J]. 电子学报, 2000,28(9):78-84.
[19] Zou H X, Zhou X B, Li Y D. Which time-frequency analysis—A survey[J]. Acta Electronica Sinica, 2000,28(9):78-84.
[20] Cohen L. Time-frequency analysis:Theory and application[M]. NewYork:McGRaw-Hill, 2000:256-260.
[21] 姜鸣, 陈进, 汪慰军. 几种Cohen类时频分布的比较及应用[J]. 机械工程学报, 2003,39(8):129-134.
[21] Jiang M, Chen J, Wang W J. Comparison and application of some time-frequency distributions belonging to cohen class[J]. Chinese Journal of Mechanical Engineering, 2003,39(8):129-134.
[1] 田郁, 乐彪. 复杂异常体模型下的三维MT倾子正演模拟[J]. 物探与化探, 2021, 45(4): 1021-1029.
[2] 王光文, 王海燕, 李洪强, 李文辉, 庞永香. 地震正演技术在深反射地震剖面探测中的应用[J]. 物探与化探, 2021, 45(4): 970-980.
[3] 徐磊, 汪思源, 张建清, 李文忠, 李鹏. 近垂直反射正演模拟及其地下工程应用[J]. 物探与化探, 2020, 44(3): 635-642.
[4] 孔省吾, 张云银, 沈正春, 张建芝, 魏红梅, 宋艳阁, 王甜. 波形指示反演在灰质发育区薄互层浊积岩预测中的应用——以牛庄洼陷沙三中亚段为例[J]. 物探与化探, 2020, 44(3): 665-671.
[5] 孙大利, 李貅, 齐彦福, 孙乃泉, 李文忠, 周建美, 孙卫民. 基于非结构网格三维有限元堤坝隐患时移特征分析[J]. 物探与化探, 2019, 43(4): 804-814.
[6] 张军伟, 刘秉峰, 李雪, 祝全兵, 任跃勤. 基于GPRMax2D的地下管线精细化探测方法[J]. 物探与化探, 2019, 43(2): 435-440.
[7] 何幼娟, 乔玉雷, 侯丽娟, 竺俊, 高刚, 王鹏. 一种变网格差分的快速行进法[J]. 物探与化探, 2019, 43(1): 199-208.
[8] 田郁, 胡祥云, 乐彪. 倾子在地球物理断裂构造解释中的应用[J]. 物探与化探, 2018, 42(6): 1237-1244.
[9] 张强, 王鑫, 乐幸福, 张建新. 正演模拟技术在白云岩薄储层预测研究中的应用[J]. 物探与化探, 2018, 42(5): 1042-1048.
[10] 国春香, 郭淑文, 朱伟峰, 袁雪花, 彭雪梅, 邢兴, 陈明旭. 河流相砂泥岩薄互层预测方法研究与应用[J]. 物探与化探, 2018, 42(3): 594-599.
[11] 齐宇, 彭俊, 刘鹏, 王存武, 郭广山, 陈思路. 地震微相分析技术——以某深水油田海底扇朵叶体为例[J]. 物探与化探, 2018, 42(1): 154-160.
[12] 贾跃玮, 魏水建, 游瑜春, 王丹. 兴隆气田长兴组生物礁储层预测研究[J]. 物探与化探, 2017, 41(4): 605-610.
[13] 赵峰. 高密度电阻率法在勘察黄土洞穴及岩溶中的装置适用性研究[J]. 物探与化探, 2016, 40(6): 1125-1130.
[14] 安鹏, 张延庆, 于志龙, 党虎强, 李旭航, 宋宇东. 基于“匹配追踪”算法的T2强反射层影响去除技术应用[J]. 物探与化探, 2016, 40(5): 955-960.
[15] 刘建辉, 夏同星, 郭军, 周学锋. 浅层气对下伏地层深度预测影响定量研究及在渤海B油田中的应用[J]. 物探与化探, 2016, 40(4): 763-770.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com