Please wait a minute...
E-mail Alert Rss
 
物探与化探  2022, Vol. 46 Issue (3): 608-617    DOI: 10.11720/wtyht.2022.1251
  地质调查·资源勘查 本期目录 | 过刊浏览 | 高级检索 |
彭水地区碳酸盐岩山地地表地震激发接收因素优选及效果
薛野1(), 杨帆1, 刘厚裕2, 刘明1, 赵苏城1, 蓝加达1
1.中国石化华东油气分公司勘探开发研究院,江苏 南京 210007
2.中国石化华东油气分公司,江苏 南京 210007
Determination of the optimal factors of seismic excitation and reception on the ground surface of carbonate mountainous areas in Pengshui area and its seismic acquisition effects
XUE Ye1(), YANG Fan1, LIU Hou-Yu2, LIU Ming1, ZHAO Su-Cheng1, LAN Jia-Da1
1. Research Institute of Exploration & Development,East Company,SINOPEC,Nanjing 210007,China
2. East China Company,SINOPEC,Nanjing 210007,China
全文: PDF(8487 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

彭水地区位于四川盆地东南缘武陵褶皱带,属于典型的喀斯特岩溶山地地貌,具有十分复杂的近地表结构,导致地震采集效果差、信噪比低,严重影响油气勘探效果。对此重点开展了碳酸盐岩裸露山地地表条件下的炸药药型、激发方式、激发井深、激发药量等激发试验以及干扰波调查、检波器类型、组合方式等接收试验与研究,优选了一套具有较好经济性与可操作性的激发与接收参数,建立了针对复杂山地地形的激发点位优选技术;与以往资料相比,新采集单炮记录能量、信噪比及一级品率明显提高,新资料处理剖面显示了较为丰富的信息,反射特征清楚、信噪比较高,在碳酸盐岩地表区显示出明显的地震构造格局。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
薛野
杨帆
刘厚裕
刘明
赵苏城
蓝加达
关键词 彭水地区碳酸盐岩地表地震采集激发接收信噪比    
Abstract

The Pengshui area,located in the Wuling fold belt at the southeast margin of Sichuan Basin,has a typical karst mountain landform and very complex near-surface structures.Such a geological setting leads to a poor seismic acquisition effect and a low signal to noise ratio (SNR),which seriously affects the oil and gas exploration in this area.This study carried out the excitation tests and research,such as charge type,excitation mode,excitation well depth,and excitation dose,as well as receiving tests on interference wave investigation and geophone types and their combination means on the ground surface in the mountainous areas with exposed carbonate rocks.Furthermore,this study selected a set of excitation and receiving parameters with a strong economy and maneuverability and established the technology used to determine the optimal excitation point location for complex mountainous terrain.Compared with the previous data,this study achieved significantly improved energy,SNR,and first-grade product rate of the newly acquired single-shot records.Moreover,the new data processing profiles obtained in this study show rich information,clear reflection characteristics,and high SNR and display a distinct seismic tectonic pattern of carbonate rock area.

Key wordsPengshui area    carbonate surface    seismic acquisition    excitation and receive    SNR
收稿日期: 2021-05-14      修回日期: 2022-03-24      出版日期: 2022-06-20
ZTFLH:  P631.4  
基金资助:国家科技重大专项项目“彭水地区常压页岩气勘探开发示范工程”(2016ZX05061);中国石化科技开发部项目“常压页岩气地球物理评价技术研究”(P21087-3)
引用本文:   
薛野, 杨帆, 刘厚裕, 刘明, 赵苏城, 蓝加达. 彭水地区碳酸盐岩山地地表地震激发接收因素优选及效果[J]. 物探与化探, 2022, 46(3): 608-617.
XUE Ye, YANG Fan, LIU Hou-Yu, LIU Ming, ZHAO Su-Cheng, LAN Jia-Da. Determination of the optimal factors of seismic excitation and reception on the ground surface of carbonate mountainous areas in Pengshui area and its seismic acquisition effects. Geophysical and Geochemical Exploration, 2022, 46(3): 608-617.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2022.1251      或      https://www.wutanyuhuatan.com/CN/Y2022/V46/I3/608
Fig.1  乳化炸药与硝氨炸药激发单炮记录与频谱分析对比
Fig.2  乳化炸药(a)与硝氨炸药(b)激发二维剖面对比
Fig.3  单井与组合井激发单炮记录对比
Fig.4  碳酸盐岩地表不同药量激发效果对比
Fig.5  碳酸盐岩地表不同井深激发效果对比
Fig.6  彭水地区不同地形激发效果对比
干扰波 v/(m·s-1) f/Hz 波长/m 出现排列
声波 330 40 8 2个排列均出现
面波1 847 9 94 2个排列均出现
面波2 1176 7 168 2个排列均出现
线性干扰1 1042 8 130 平行构造走向排列
线性干扰2 1386 8 173 垂直构造走向排列
线性干扰3 2674 7 382 平行构造走向排列
线性干扰4 2800 13 215 平行构造走向排列
Table 1  干扰波调查参数
Fig.7  不同检波器接收的单炮记录(10~50 Hz)对比
a—模拟检波器组合接收单炮记录;b—数字检波器单点接收单炮记录
Fig.8  碳酸盐岩地表模拟检波器不同组合图形接收剖面对比
a—矩形6×4组合接收剖面;b—同心圆组合接收剖面;c—矩形8×3组合接收剖面
Fig.9  碳酸盐岩地表模拟检波器不同串数组合接收记录对比
a—双串模拟检波器接收记录;b—单串模拟检波器接收记录
Fig.10  无线节点(a)与常规有缆采集(b)单炮对比
Fig.11  激发接收参数优化前后地震采集单炮对比
a—原采集单炮;b—激发接收参数优化后采集单炮
Fig.12  激发接收参数优化前后同位置地震采集资料处理二维剖面对比
a—前期地震采集资料处理二维剖面;b—激发接收参数优化后地震采集资料处理二维剖面
[1] 聂海宽, 何治亮, 刘光祥, 等. 中国页岩气勘探开发现状与优选方向[J]. 中国矿业大学学报, 2020, 49(1):13-35.
[1] Nie H K, He Z L, Liu G X, et al. Status and direction of shale gas exploration and development in China[J]. Journal of China University of Mining & Technology, 2020, 49(1):13-35.
[2] 马新华. 四川盆地南部页岩气富集规律与规模有效开发探索[J]. 天然气工业, 2018, 38(10):1-10.
[2] Ma X H. Enrichment laws and scale effective development of shale gas in the southern Sichuan Basin[J]. Natural Gas Industry, 2018, 38(10):1-10.
[3] 何希鹏. 四川盆地东部页岩气甜点评价体系与富集高产影响因素[J]. 天然气工业, 2021, 41(1):59-71.
[3] He X P. Sweet spot evaluation system and enrichment and high yield influential factors of shale gas in Nanchuan area of eastern Sichuan Basin[J]. Natural Gas Industry, 2021, 41(1):59-71.
[4] 郭彤楼, 蒋恕, 张培先, 等. 四川盆地外围常压页岩气勘探开发进展与攻关方向[J]. 石油实验地质, 2020, 42(5):837-845.
[4] Guo T L, Jiang S, Zhang P X, et al. Progress and direction of exploration and development of normally-pressured shale gas from the periphery of Sichuan Basin[J]. Petroleum Geology and Experiment, 2020, 42(5):837-845.
[5] 郭彤楼. 页岩气勘探开发中的几个地质问题[J]. 油气藏评价与开发, 2019, 9(5):14-19.
[5] Guo T L. A few geological issues in shale gas exploration and development[J]. Reservoir Evaluation and Development, 2019, 9(5):14-19.
[6] 何贵松, 何希鹏, 高玉巧, 等. 渝东南盆缘转换带金佛斜坡常压页岩气富集模式[J]. 天然气工业, 2020, 40(6):50-60.
[6] He G S, He X P, Gao Y Q, et al. Enrichment model of normal-pressure shale gas in the Jinfo slope of the basin-margin transition zone in Southeast Chongqing[J]. Natural Gas Industry, 2020, 40(6):50-60.
[7] 何希鹏, 何贵松, 高玉巧, 等. 渝东南盆缘转换带常压页岩气地质特征及富集高产规律[J]. 天然气工业, 2018, 38(12):1-14.
[7] He X P, He G S, Gao Y Q, et al. Geological characteristics and enrichment laws of normal-pressure shale gas in the basin-margin transition zone of SE Chongqing[J]. Natural Gas Industry, 2018, 38(12):1-14.
[8] 方志雄. 中国南方常压页岩气勘探开发面临的挑战及对策[J]. 油气藏评价与开发, 2019, 9(5):1-13.
[8] Fang Z X. Challenges and countermeasures for exploration and development of normal pressure shale gas in southern China[J]. Reservoir Evaluation and Development, 2019, 9(5):1-13.
[9] 方志雄, 何希鹏. 渝东南武隆向斜常压页岩气形成与演化[J]. 石油与天然气地质, 2016, 37(6):819-827.
[9] Fang Z X, He X P. Formation and evolution of normal pressure shale gas reservoir in Wulong Syncline,Southeast Chongqing,China[J]. Oil & Gas Geology, 2016, 37(6):819-827.
[10] 何希鹏, 张培先, 房大志, 等. 渝东南彭水—武隆地区常压页岩气生产特征[J]. 油气地质与采收率, 2018, 25(5):72-79.
[10] He X P, Zhang P X, Fang D Z, et al. Production characteristics of normal pressure shale gas in Pengshui-Wulong area,southeast Chongqing[J]. Petroleum Geology and Recovery Efficiency, 2018, 25(5):72-79.
[11] 云美厚, 曹文明, 聂岩, 等. 碳酸盐岩裸露区近地表地震波衰减特性初探[J]. 石油物探, 2012, 51(5):425-430.
[11] Yun M H, Cao W M, Nie Y, et al. Preliminary study on the attenuation characteristics of seismic wave propagation in near surface layers of carbonate out—cropped area[J]. Geophysical Prospecting for Petroleum, 2012, 51(5):425-430.
[12] 刘厚裕. 中国南方碳酸盐岩裸露区表层地震地质条件研究[J]. 油气藏评价与开发, 2012, 2(6):6-9,19.
[12] Liu H Y. Research on surface seismic geologic conditions of carbonate exposed area in South China[J]. Reservoir Evaluation and Development, 2012, 2(6):6-9,19.
[13] 王昀, 王福宝, 岳承琪, 等. 低信噪比地区地震采集激发技术探讨[J]. 石油物探, 2013, 52(3):259-264.
[13] Wang Y, Wang F B, Yue C Q, et al. Discussion on the seismic data acquisition technology in low SNR area[J]. Geophysical Prospecting for Petroleum, 2013, 52(3):259-264.
[14] 齐中山. 改善灰岩裸露区地震激发环境的方法探讨[J]. 石油物探, 2015, 54(4):382-387.
[14] Qi Z S. Discussion on the improvement of the shooting circumstance for the seismic acquisition in limestone outcropped area[J]. Geophysical Prospecting for Petroleum, 2015, 54(4):382-387.
[15] 薛野, 刘田田. 贵州织金浅煤层地震勘探技术的实践与认识[J]. 煤田地质与勘探, 2018, 46(4):161-167.
[15] Xue Y, Liu T T. The practice and understanding of seismic exploration technology of shallow coal seams in Zhijin area,Guizhou Province[J]. Coal Geology & Exploration, 2018, 46(4):161-167.
[16] 刘厚裕. 页岩气低密度三维地震勘探方法适应性评估分析[J]. 油气藏评价与开发, 2020, 10(5):34-41,48.
[16] Liu H Y. Adaptability evaluation and analysis of low density 3D seismic exploration method for shale gas[J]. Reservoir Evaluation and Development, 2020, 10(5):34-41,48.
[17] 邸志欣, 丁伟, 王增明, 等. 复杂山前带地震勘探采集技术的实践与认识[J]. 石油物探, 2012, 51(6):548-561.
[17] Di Z X, Ding W, Wang Z M, et al. Practice and understanding of seismic acquisition technology in complicated foothill area[J]. Geophysical Prospecting for Petroleum, 2012, 51(6):548-561.
[18] 刘远志, 刘胜, 张志锋, 等. 全数字单点采集技术在四川盆地的应用[J]. 石油地球物理勘探, 2014, 49(5):829-838.
[18] Liu Y Z, Liu S, Zhang Z F, et al. Point receiver acquisition with single digital sensor in Sichuan Basin[J]. Oil Geophysical Prospecting, 2014, 49(5):829-838.
[19] 梁运基, 李桂林. 陆上高分辨率地震勘探检波器性能及参数选择分析[J]. 石油物探, 2005, 44(6):640-644.
[19] Liang Y J, Li G L. The geophone property and preferences in land high-resolution seismic survey[J]. Geophysical Prospecting for Petroleum, 2005, 44(6):640-644.
[20] 魏继东, 丁伟. 检波器野外组合因素对地震资料品质的影响分析[J]. 石油物探, 2010, 49(3):312-318.
[20] Wei J D, Ding W. Impact analysis of geophone array factors on seismic data quality[J]. Geophysical Prospecting for Petroleum, 2010, 49(3):312-318.
[1] 王通, 刘建勋, 王兴宇, 李广才, 田密. Shearlet域尺度角度自适应深反射地震数据随机噪声压制方法[J]. 物探与化探, 2022, 46(3): 704-713.
[2] 段莹, 张高成, 谭雅丽. 泌阳凹陷高陡构造带地震成像[J]. 物探与化探, 2021, 45(4): 981-989.
[3] 邱庆良, 曹乃文, 白烨. 可控震源激发参数优选及应用效果[J]. 物探与化探, 2021, 45(3): 686-691.
[4] 张斯薇, 吴荣新, 韩子傲, 吴海波. 双边滤波在探地雷达数据去噪处理中的应用[J]. 物探与化探, 2021, 45(2): 496-501.
[5] 周锦钟, 张金海, 牛全兵, 张惠瑜, 王海峰, 朱波, 李丽, 尹思, 王娜. 柴达木盆地尖顶山地区低频可控震源“两宽一高”地震资料处理关键技术应用研究[J]. 物探与化探, 2020, 44(2): 313-320.
[6] 马振, 孙成禹, 彭鹏鹏, 姚振岸. 速度误差和地震噪声对最小二乘逆时偏移的影响分析[J]. 物探与化探, 2020, 44(2): 329-338.
[7] 时伟, 林春华, 王维红, 高云路. 双约束变换时窗统计能量比地震波初至拾取方法[J]. 物探与化探, 2019, 43(5): 1064-1073.
[8] 王海立, 陈炳超, 王婷婷, 于宝华, 张树刚, 马立新. 西部高原咸化地表静校正方法应用[J]. 物探与化探, 2018, 42(5): 1064-1068.
[9] 葛志广, 陈永生, 周小仙. 漠河冻土带天然气水合物地震采集关键技术[J]. 物探与化探, 2018, 42(2): 285-291.
[10] 王海立, 王永生, 王彪, 马立新, 张先建. 基于强波阻抗反射界面的静校正方法及应用[J]. 物探与化探, 2018, 42(2): 347-351.
[11] 郭奇, 曾昭发, 于晨霞, 张思萌. 基于高精度字典学习算法的地震随机噪声压制[J]. 物探与化探, 2017, 41(5): 907-913.
[12] 刁瑞, 吴国忱, 尚新民, 芮拥军, 崔庆辉. 地面阵列式微地震数据盲源分离去噪方法[J]. 物探与化探, 2017, 41(3): 521-526.
[13] 张保卫, 王小江, 张凯. 新疆喀拉通克铜镍矿地震资料噪声分析与压制[J]. 物探与化探, 2016, 40(4): 771-777.
[14] 何柯, 周丽萍, 于宝利, 邓勇, 王丽丽, 王茜. 基于补偿阈值的曲波变换地面微地震弱信号检测方法[J]. 物探与化探, 2016, 40(1): 55-60.
[15] 王大勇, 朱威, 范翠松, 姚大为. 矿集区大地电磁噪声处理方法及其应用[J]. 物探与化探, 2015, 39(4): 823-829.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com