Please wait a minute...
E-mail Alert Rss
 
物探与化探  2025, Vol. 49 Issue (1): 63-72    DOI: 10.11720/wtyht.2025.2424
  方法研究信息处理仪器研制 本期目录 | 过刊浏览 | 高级检索 |
位场的footprint分析及footprint-FFT快速正演方法
孙思源(), 高秀鹤, 曹学峰
中国自然资源航空物探遥感中心,北京 100083
Footprint analysis and footprint-FFT-based fast forward modeling of potential fields
SUN Si-Yuan(), GAO Xiu-He, CAO Xue-Feng
China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, Beijing 100083, China
全文: PDF(4276 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

传统大规模重磁位场数据正反演对计算机性能要求较高,同时计算效率较低。针对这一问题,本文定义了位场footprint判定方法,分析其影响因素,并首次提出了一种footprint-FFT位场正演策略。该算法从3个方面改善这一过程:①基于位场衍生性质计算核矩阵,大幅精简位场核矩阵大小;②引入并定义适用于位场的footprint概念,实现数据规模和核矩阵大小的“脱钩”,改善核矩阵计算效率和硬件成本;③在前两者基础上对计算区域划分子空间,首次提出footprint-FFT策略,实现子空间的位场批量计算,加速正演计算过程。该方法降低了核矩阵计算量和存储量,在大幅提高运算速度的同时,保证了计算精度。基于本文提出的方法,在笔记本电脑上实现了10多亿网格的位场快速正演,并在数分钟内完成计算。理论算例表明该方法效率高,同时对计算机的配置要求不高,在大规模位场数据正反演上潜力巨大。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙思源
高秀鹤
曹学峰
关键词 核矩阵footprintFFT位场正演    
Abstract

Conventional inversion and forward modeling of large-scale potential field data from gravity and magnetic exploration, demanding high computer performance, exhibit low efficiency. Hence, this study defined a footprint determination method for potential fields, analyzed the influencing factors, and innovatively proposed a footprint-FFT strategy for forward modeling of potential fields. The footprint-FFT algorithm improved the forward modeling process from three aspects: (1) Kernel matrices were calculated based on the potential field-derived properties, significantly reducing their size; (2) A footprint concept for potential fields was introduced and defined, decoupling data scales from kernel matrix sizes, thus improving the kernel matrix computing efficiency and reducing the hardware cost; (3) Based on the above, the computing area was divided into subspaces, and the footprint-FFT strategy was first proposed for the batch computing of potential fields in subspaces, accelerating the forward modeling process. By reducing the computational complexity and storage of the kernel matrix, the method proposed in this study significantly improved the operational speed while ensuring computational accuracy. This method enabled the fast forward modeling of potential fields with more than 1 billion grids on a laptop computer within a few minutes. Theoretical examples demonstrate that this method has high efficiency and moderate requirements for computer configuration, manifesting considerable potential in the forward modeling and inversion of large-scale potential field data.

Key wordskernel matrix    footprint    FFT    potential field    forward modeling
收稿日期: 2023-10-13      修回日期: 2023-12-13      出版日期: 2025-02-20
ZTFLH:  P631  
基金资助:国家深地重大专项(20242D1002806);国家重点研发计划项目(2021YFB3900205);国家自然科学基金青年基金项目(42004125)
作者简介: 孙思源(1991-),男,2019年获得吉林大学博士学位,现任高级工程师,从事航空地球物理数据处理和反演研究工作。Email:sunsiyuanvip@163.com
引用本文:   
孙思源, 高秀鹤, 曹学峰. 位场的footprint分析及footprint-FFT快速正演方法[J]. 物探与化探, 2025, 49(1): 63-72.
SUN Si-Yuan, GAO Xiu-He, CAO Xue-Feng. Footprint analysis and footprint-FFT-based fast forward modeling of potential fields. Geophysical and Geochemical Exploration, 2025, 49(1): 63-72.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2025.2424      或      https://www.wutanyuhuatan.com/CN/Y2025/V49/I1/63
Fig.1  位场footprint示意
Fig.2  footprint判定方法示意
Fig.3  场值贡献随计算半径变化曲线
(圆点表示计算的footprint半径坐标点)
Fig.4  位场VzVxx的footprint影响因素分析
Fig.5  Footprint-FFT处理示意
Fig.6  长方体异常正演结果
a—重力场;b—垂直磁化下磁异常场;c—斜磁化下磁异常场
Fig.7  长方体异常正演结果与理论解的绝对误差分布
a—重力场;b—垂直磁化下磁异常场;c—斜磁化下磁异常场
Fig.8  Bishop模型基底地形深度变化
Fig.9  Bishop模型基底磁化率变化
Fig.10  Bishop基底模型重力场(a)和磁异常场(b)正演结果
[1] Li Y G, Oldenburg D W. Fast inversion of large-scale magnetic data using wavelet transforms and a logarithmic barrier method[J]. Geophysical Journal International, 2003, 152(2):251-265.
[2] Davis K, Li Y G. Efficient 3D inversion of magnetic data via octree-mesh discretization,space-filling curves,and wavelets[J]. Geophysics, 2013, 78(5):J61-J73.
[3] Martin R, Monteiller V, Komatitsch D, et al. Gravity inversion using wavelet-based compression on parallel hybrid CPU/GPU systems:Application to southwest Ghana[J]. Geophysical Journal International, 2013, 195(3):1594-1619.
[4] Sun S Y, Yin C C, Gao X H, et al. Gravity compression forward modeling and multiscale inversion based on wavelet transform[J]. Applied Geophysics, 2018, 15(2):342-352.
[5] Parker R L. The rapid calculation of potential anomalies[J]. Geophysical Journal International, 1973, 31(4):447-455.
[6] Chai Y F, Hinze W J. Gravity inversion of an interface above which the density contrast varies exponentially with depth[J]. Geophysics, 1988, 53(6):837-845.
[7] Caratori Tontini F, Cocchi L, Carmisciano C. Rapid 3D forward model of potential fields with application to the Palinuro Seamount magnetic anomaly (southern Tyrrhenian Sea,Italy)[J]. Journal of Geophysical Research:Solid Earth, 2009, 114(B2):B02103.
[8] Sansò F, and M. G.Sideris, 2013, Geoid Determination: The forward modelling of the gravity field. Springer,Berlin,Heidelberg.
[9] 吴乐园. 重磁位场频率域高精度正演方法:Gauss-FFT法[D]. 杭州: 浙江大学, 2014.
[9] Wu L Y. High-precision fourier-domain modeling of potential fields:Gauss-FFT method[D]. Hangzhou: Zhejiang University, 2014.
[10] Wu L Y. Efficient modeling of gravity fields caused by sources with arbitrary geometry and arbitrary density distribution[J]. Surveys in Geophysics, 2018, 39(3):401-434.
[11] Zhao G D, Chen B, Chen L W, et al. High-accuracy 3D Fourier forward modeling of gravity field based on the Gauss-FFT technique[J]. Journal of Applied Geophysics, 2018,150:294-303.
[12] Jahandari H, Farquharson C G. Forward modeling of gravity data using finite-volume and finite-element methods on unstructured grids[J]. Geophysics, 2013, 78(3):G69-G80.
[13] Farquharson C G, Mosher C R W. Three-dimensional modelling of gravity data using finite differences[J]. Journal of Applied Geophysics, 2009, 68(3):417-422.
[14] Zhdanov M S. New advances in regularized inversion of gravity and electromagnetic data[J]. Geophysical Prospecting, 2009, 57(4):463-478.
[15] Cuma M, Wilson G A, Zhdanov M S. Large-scale 3D inversion of potential field data[J]. Geophysical Prospecting, 2012,60(6):1186-1199.
[16] Moorkamp M, Jegen M, Roberts A, et al. Massively parallel forward modeling of scalar and tensor gravimetry data[J]. Computers & Geosciences, 2010, 36(5):680-686.
[17] 陈召曦, 孟小红, 刘国峰, 等. 基于GPU的任意三维复杂形体重磁异常快速计算[J]. 物探与化探, 2012, 36(1):117-121.
[17] Chen Z X, Meng X H, Liu G F, et al. The GPU-based parallel calculation of gravity and magnetic anomalies for 3D arbitrary bodies[J]. Geophysical and Geochemical Exploration, 2012, 36(1):117-121.
[18] Chen Z X, Meng X H, Guo L H, et al. GICUDA:A parallel program for 3D correlation imaging of large scale gravity and gravity gradiometry data on graphics processing units with CUDA[J]. Computers & Geosciences, 2012,46:119-128.
[19] Gross L, Altinay C, Shaw S. Inversion of potential field data using the finite element method on parallel computers[J]. Computers & Geosciences, 2015,84:61-71.
[20] 黄炎, 王庆宾, 冯进凯, 等. 局部地形改正快速计算的GPU并行的棱柱法[J]. 测绘学报, 2020, 49(11):1430-1437.
doi: 10.11947/j.AGCS.2020.20190403
[20] Huang Y, Wang Q B, Feng J K, et al. Rapid calculation of local topographic correction based on GPU parallel prism method[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(11):1430-1437.
doi: 10.11947/j.AGCS.2020.20190403
[21] Ascher U M, Haber E. Grid refinement and scaling for distributed parameter estimation problems[J]. Inverse Problems, 2001, 17(3):571-590.
[22] May D A, Knepley M G. Optimal,scalable forward models for computing gravity anomalies[J]. Geophysical Journal International, 2011, 187(1):161-177.
[23] Casenave F, Métivier L, Pajot-Métivier G, et al. Fast computation of general forward gravitation problems[J]. Journal of Geodesy, 2016, 90(7):655-675.
[24] Ren Z Y, Tang J T, Kalscheuer T, et al. Fast 3D large-scale gravity and magnetic modeling using unstructured grids and an adaptive multilevel fast multipole method[J]. Journal of Geophysical Research:Solid Earth, 2017, 122(1):79-109.
[25] Boulanger O, Chouteau M. Constraints in 3D gravity inversion[J]. Geophysical Prospecting, 2001, 49(2):265-280.
[26] 姚长利, 郝天珧, 管志宁, 等. 重磁遗传算法三维反演中高速计算及有效存储方法技术[J]. 地球物理学报, 2003, 46(2):252-258.
[26] Yao C L, Hao T Y, Guan Z N, et al. High-speed computation and efficient storage in 3D gravity and magnetic inversion based on genetic algorithms[J]. Chinese Journal of Geophysics, 2003, 46(2):252-258.
[27] Bruun C E, Nielsen T B. Algorithms and software for large-scale geophysical reconstructions[J]. Denmark:Technical University of Denmark, 2007.
[28] Zhang Y L, Wong Y S. BTTB-based numerical schemes for three-dimensional gravity field inversion[J]. Geophysical Journal International, 2015, 203(1):243-256.
[29] Chen L W, Liu L B. Fast and accurate forward modelling of gravity field using prismatic grids[J]. Geophysical Journal International, 2019, 216(2):1062-1071.
[30] Hogue J D, Renaut R A, Vatankhah S. A tutorial and open source software for the efficient evaluation of gravity and magnetic kernels[J]. Computers & Geosciences, 2020,144:104575.
[31] 袁洋, 崔益安, 陈波, 等. 基于BTTB矩阵的快速高精度三维磁场正演[J]. 地球物理学报, 2022, 65(3):1107-1124.
[31] Yuan Y, Cui Y A, Chen B, et al. Fast and high accuracy 3D magnetic anomaly forward modeling based on BTTB matrix[J]. Chinese Journal of Geophysics, 2022, 65(3):1107-1124.
[32] Sun S Y, Gao X H, Cao X F. Fast 3D forward modeling of a potential field based on spherical symmetry of gravitational potential[J]. Geophysics, 2023, 88(3):G29-G42.
[33] Cox L H, Zhdanov M S. Large-scale 3D inversion of HEM data using a moving footprint[C]// SEG Technical Program Expanded Abstracts 2007.Society of Exploration Geophysicists, 2007.
[34] Cuma M, Zhdanov M S. Massively parallel regularized 3D inversion of potential fields on CPUs and GPUs[J]. Computers & Geosciences, 2014,62:80-87.
[35] Liu Y H, Yin C C. 3D inversion for multipulse airborne transient electromagnetic data[J]. Geophysics, 2016, 81(6):E401-E408.
[36] 石泽玉, 张志厚, 刘鹏飞, 等. 重力及其梯度异常正演的Moving-footprint大尺度模型分解方法[J]. 物探与化探, 2022, 46(3):576-584.
[36] Shi Z Y, Zhang Z H, Liu P F, et al. Moving-footprint-based large-scale model decomposition method for forward modeling of gravity and gravity gradient anomalies[J]. Geophysical and Geochemical Exploration, 2022, 46(3):576-584.
[37] Williams S E, Fairhead J D, Flanagan G. Comparison of grid Euler deconvolution with and without 2D constraints using a realistic 3D magnetic basement model[J]. Geophysics, 2005, 70(3):L13-L21.
[38] Barnes G, Lumley J. Processing gravity gradient data[J]. Geophysics, 2011, 76(2):I33-I47.
[1] 张紫薇, 李厚朴, 张恒磊, 朱丹. 基于低秩稀疏分解的重磁异常分离方法及应用[J]. 物探与化探, 2025, 49(1): 118-128.
[2] 蒋志强, 林超, 杨庭伟, 宁晓斌. 基于虚拟波场的可控源三维电磁法正演[J]. 物探与化探, 2024, 48(5): 1348-1358.
[3] 胡英才, 王瑞廷, 李貅. 激电效应对AMT正演的影响及其在砂岩型铀矿中的数值模拟[J]. 物探与化探, 2024, 48(4): 1006-1017.
[4] 张奎涛, 廖家荣, 顾汉明, 孙瑛莹, 陈怿旸, 王凯. 基于伪解析法的TTI介质纯qP波地震波场正演模拟[J]. 物探与化探, 2024, 48(1): 125-133.
[5] 周钟航, 张莹莹. 山峰对电性源地面瞬变电磁响应的影响及校正方法[J]. 物探与化探, 2023, 47(5): 1236-1249.
[6] 邢涛, 王垚, 李建慧. 基于B样条插值的瞬变电磁响应一维精确计算[J]. 物探与化探, 2023, 47(5): 1316-1325.
[7] 张阳阳, 杜威, 王芝水, 缪旭煌, 张翔. 基于Lévay飞行的粒子群算法在大地电磁反演中的应用[J]. 物探与化探, 2023, 47(4): 986-993.
[8] 吴国培, 张莹莹, 赵华亮, 周钟航, 李医滨. 基于横向约束的中心回线瞬变电磁一维反演[J]. 物探与化探, 2023, 47(4): 1024-1032.
[9] 王润生, 武斌, 张海瑞, 于嘉宾, 董彦龙, 郭国强, 康一鸣. 山东省临沂凸起东北缘重力场特征及大地构造单元边界讨论[J]. 物探与化探, 2023, 47(2): 279-289.
[10] 但光箭, 周成刚, 刘云宏, 李相文, 张亮亮, 张明, 王春阳. 轮古西地区奥陶系碳酸盐岩古暗河系统地震特征分析[J]. 物探与化探, 2023, 47(2): 290-299.
[11] 张入化, 张洞君, 黄建平, 苟其勇, 周嘉妮. 基于LSCG法和波数补偿的频率域二维地震正演模拟方法[J]. 物探与化探, 2023, 47(2): 384-390.
[12] 罗术, 陈争玉, 蓝宇骋, 刘阳飞, 段明杰. 等值反磁通瞬变电磁法探测滑坡堆积体的应用[J]. 物探与化探, 2023, 47(2): 523-529.
[13] 赵军, 孟欣佳, 李冰, 刘志民. 坑道聚焦直流激电法电流场分布特性及探测影响因素分析[J]. 物探与化探, 2023, 47(1): 120-128.
[14] 孙海川, 王文忠, 李治中, 刘永亮. 多激励源瞬变电磁探测方法在煤矿采空区的应用[J]. 物探与化探, 2022, 46(5): 1306-1314.
[15] 孟庆奎, 张文志, 高维, 舒晴, 李瑞, 徐光晶, 张凯淞. 重力位场小波多尺度分解性质的分析与应用[J]. 物探与化探, 2022, 46(4): 946-954.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com