This study converted the frequency-domain electromagnetic diffusion equation into the wave equation in the fictitious domain based on the transformation relationship between the diffusion field and the fictitious wave field,achieving the numerical calculation of the electromagnetic field in the fictitious wave field.By introducing the complex frequency shifted perfectly matched layer(CFPML) boundary condition,the storage capacity of the computer memory decreased.Furthermore,by encompassing the air layer in the calculation domain,the complex processing of the ground-air interfaces was avoided.Compared to the uniform half-space analytical solution,the algorithm proposed in this study had relative errors of less than 3.5% and thus is effective and correct.Finally,the numerical simulation of a typical geoelectric model indicated that the 3D electromagnetic responses of multiple frequencies can be obtained through single forward modeling,suggesting an elevated calculation efficiency.The numerical simulation results also exhibit that the apparent resistivity calculated based on the fictitious wave field is insensitive to the field source effect and thus can effectively identify anomaly boundaries.
蒋志强, 林超, 杨庭伟, 宁晓斌. 基于虚拟波场的可控源三维电磁法正演[J]. 物探与化探, 2024, 48(5): 1348-1358.
JIANG Zhi-Qiang, LIN Chao, YANG Ting-Wei, NING Xiao-Bin. Forward modeling of a controllable-source 3D electromagnetic method based on fictitious wave field. Geophysical and Geochemical Exploration, 2024, 48(5): 1348-1358.
Wu L P, Li Y H. Application of controllable source audio frequency magnetotelluric method in groundwater exploration[J]. Journal of Geophysics, 1996, 39(5):712-717.
Huang L J, Lu G F, Liu R D. Application example of controllable source audio frequency magnetotelluric sounding[J]. Geophysical and Geochemical Prospecting Calculation Technology, 2006, 28(4):337-341.
Liu R D, Huang L J, Meng Y S. Preliminary study on the application effect of controllable source audio frequency magnetotelluric sounding in geothermal field exploration[J]. Journal of Engineering Geophysics, 2007, 4(2):86-89.
Cheng J M. Application of controllable source audio frequency magnetotelluric method in hidden coal mine area[J]. Progress in Geophysics, 2008, 23(4):1269-1272.
Dong Z Y, Tang J, Zhou Z M. Application of controllable source audio frequency magnetotelluric method in detection of concealed active faults[J]. Seismology and Geology, 2010, 32(3):442-452.
Zhang G H, Li R H. Experimental results of controlled source audio frequency magnetotelluric method for deep prospecting[J]. Geophysical and Geochemical Exploration, 2010, 34(1):66-70.
[8]
Pridmore D F, Hohmann G W, Ward S H, et al. An investigation of finite- element modeling for electrical and electromagnetic data in three dimensions[J]. Geophysics, 1981, 46(7):1009-1024.
[9]
Mitsuhata Y. 2-D electromagnetic modeling by finite-element method with a dipole source and topography[J]. Geophysics, 2000, 65(2):465-475.
Gu G W, Wu W L, Li T L. Vector finite element numerical simulation of three-dimensional terrain influence of magnetotelluric field[J]. Journal of Jilin University:Earth Science Edition, 2014, 44(5):1678-1686.
[11]
Raiche A, Coggon J. Analytic Green's tensors for integral equation modelling[J]. Geophysical Journal of the Royal Astronomical Society, 1975, 42(3):1035-1038.
Bao G S, Zhang B X, Jing R Z, et al. Numerical simulation of three-dimensional electromagnetic response by integral equation method[J]. Journal of Central South University:Natural Science Edition, 1999, 30(5):35-37.
Chen G B, Wang H N, Yao J J. Using integral equation method to simulate electromagnetic response of three-dimensional electrical anomaly body in anisotropic formation[J]. Chinese Journal of Geophysics, 2009, 52(8):234-241.
Peng R H, Hu X Y, Han B. Three-dimensional forward calculation of controllable source in frequency domain based on pseudo-finite volume method[J]. Journal of Geophysics, 2016, 59(10):3927-3939.
[15]
Mackie R L. Three-dimensional magnetotelluric modeling using difference equations—Theory and comparisons to integral equation solutions[J]. Geophysics, 1993, 58(2):215-226.
Sheng J S. The finite difference method is used to calculate the response of multicomponent induction logging in anisotropic media[J]. Progress in Geophysics, 2004, 19(1):101-107.
[17]
Liu Y H, Yin C C. Electromagnetic divergence correction for 3D anisotropic EM modeling[J]. Journal of Applied Geophysics, 2013,96:19-27.
[18]
朱成. 带地形频率域可控源电磁法三维正反演研究[D]. 长春: 吉林大学, 2016.
[18]
Zhu C. Three-dimensional forward and inverse modeling of controllable source electromagnetic method in frequency domain with terrain[D]. Changchun: Jilin University, 2016.
[19]
Lee K H, Liu G, Morrison H F. A new approach to modeling the electromagnetic response of conductive media[J]. Geophysics, 1989, 54(9):1180-1192.
[20]
Maaø F. Fast finite-difference time-domain modeling for marine-subsurface electromagnetic problems[J]. SEG Technical Program Expanded Abstracts, 1949, 72(25):35-41.
[21]
Mittet R. High-order finite-difference simulations of marine CSEM surveys using a correspondence principle for wave and diffusion fields[J]. Geophysics, 2010, 75(1):F33-F50.
[22]
Berenger J P. A perfectly matched layer for the absorption of electromagnetic waves[J]. Journal of Computational Physics, 1994, 114(2):185-200.
[23]
徐正玉. 地—井瞬变电磁时域有限差分三维数值模拟[D]. 南昌: 东华理工大学, 2016.
[23]
Xu Z Y. Three-dimensional finite-difference time-domain numerical simulation of surface-well transient electromagnetic[D]. Nanchang: East China University of Technology, 2016.
[24]
Kuzuoglu M, Mittra R. Frequency dependence of the constitutive parameters of causal perfectly matched anisotropic absorbers[J]. IEEE Microwave & Guided Wave Lett., 1996, 6(12):447-449.
[25]
Ryhove S K, Mittet R. 3D marine magnetotelluric modeling and inversion with the finite-difference time-domain method[J]. Geophysics, 2014, 79(6):E269-E286.
[26]
Li G, Li Y G, Han B, et al. Application of the perfectly matched layer in 3-D marine controlled-source electromagnetic modelling[J]. Geophysical Journal International, 2018(1):333-344.
[27]
Du Fort E C, Frankel S P. Stability conditions in the numerical treatment of parabolic differential equations[J]. Mathematical Tables and Other Aids to Computation, 1953, 7(43):135-152.
[28]
Adhidjaja J I, Hohmann G W. A finite-difference algorithm for the transient electromagnetic response of a three-dimensional body[J]. Geophysical Journal International, 1989, 98(2):233-242.
[29]
葛德彪, 闫玉波. 电磁波时域有限差分方法[M]. 西安: 西安电子科技大学出版社, 2002.
[29]
Ge D B, Yan Y B. Finite difference time domain method of electromagnetic wave[M]. Xi'an: Xi'an University of Electronic Science and Technology Press, 2002.
[30]
Adhidjaja J I, Hohmann G W. A finite-difference algorithm for the transient electromagnetic response of a three-dimensional body[J]. Geophysical Journal International, 1989, 98(2):233-242.
[31]
吕英华. 计算电磁学的数值方法[M]. 北京: 清华大学出版社, 2006.
[31]
Lyu Y H. A numerical method for calculating electromagnetism[M]. Beijing: Tsinghua University Press, 2006.
[32]
Commer M, Newman G A. An accelerated time domain finite difference simulation scheme for three-dimensional transient electromagnetic modeling using geometric multigrid concepts[J]. Radio Science, 2006, 41(3):1-15.
[33]
辛会翠. 瞬变电磁法2.5维有限差分正演模拟研究[D]. 长沙: 中南大学, 2013.
[33]
Xin H C. Research on 2.5D finite-difference forward modeling of transient electromagnetic method[D]. Changsha: Central South University, 2013.
[34]
Hördt A, Dautel S, Tezkan B, et al. Interpretation of long-offset transient electromagnetic data from the Odenwald area,Germany,using two-dimensional modelling[J]. Geophysical Journal International, 2000, 140(3):577-586.
[35]
Commer M, Hoversten G M, Um E S. Transient-electromagnetic finite-difference time-domain earth modeling over steel infrastructure[J]. Geophysics, 2015, 80(2):E147-E162.
[36]
Hu Y, Egbert G, Ji Y, et al. A novel CFS-PML boundary condition for transient electromagnetic simulation using a fictitious wave domain method[J]. Radio Science, 2017, 52(1):118-131.