Please wait a minute...
E-mail Alert Rss
 
物探与化探  2024, Vol. 48 Issue (5): 1348-1358    DOI: 10.11720/wtyht.2024.1124
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
基于虚拟波场的可控源三维电磁法正演
蒋志强1(), 林超2,3(), 杨庭伟2,3,4, 宁晓斌2
1.广西新发展交通集团有限公司,广西 南宁 530029
2.广西交科集团有限公司,广西 南宁 530007
3.广西壮族自治区公路隧道安全预警工程研究中心,广西 南宁 530007
4.广西道路结构与材料重点实验室,广西 南宁 530007
Forward modeling of a controllable-source 3D electromagnetic method based on fictitious wave field
JIANG Zhi-Qiang1(), LIN Chao2,3(), YANG Ting-Wei2,3,4, NING Xiao-Bin2
1. Guangxi XinFaZhan Communication Group Co.,Ltd.,Nanning 530029,China
2. Guangxi Transportation Science and Technology Group Co.,Ltd.,Nanning 530007,China
3. Guangxi Highway Tunnel Safety Warning Engineering Research Center,Nanning 530007,China
4. Guangxi Key Lab of Road Structure and Materials,Nanning 530007,China
全文: PDF(5381 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

根据扩散场和虚拟波场的变换关系,将频率域电磁扩散方程转换成虚拟域的波动方程,实现了虚拟波场的电磁场数值计算。在边界的处理上,通过引入复频率完全匹配层吸收边界条件,降低了内存的存储量。将空气层包含在计算域中,避免了地—空界面的复杂处理。通过与均匀半空间解析解对比,其相对误差在3.5%以内,验证了算法的有效性和正确性。最后通过典型地电模型的数值模拟表明:通过一次正演可以获得多个频率的三维电磁响应,提高了计算效率。虚拟波场计算的视电阻率对场源效应不敏感且对异常体的边界具有较好的识别能力。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
蒋志强
林超
杨庭伟
宁晓斌
关键词 可控源电磁法虚拟波场有限差分法三维正演    
Abstract

This study converted the frequency-domain electromagnetic diffusion equation into the wave equation in the fictitious domain based on the transformation relationship between the diffusion field and the fictitious wave field,achieving the numerical calculation of the electromagnetic field in the fictitious wave field.By introducing the complex frequency shifted perfectly matched layer(CFPML) boundary condition,the storage capacity of the computer memory decreased.Furthermore,by encompassing the air layer in the calculation domain,the complex processing of the ground-air interfaces was avoided.Compared to the uniform half-space analytical solution,the algorithm proposed in this study had relative errors of less than 3.5% and thus is effective and correct.Finally,the numerical simulation of a typical geoelectric model indicated that the 3D electromagnetic responses of multiple frequencies can be obtained through single forward modeling,suggesting an elevated calculation efficiency.The numerical simulation results also exhibit that the apparent resistivity calculated based on the fictitious wave field is insensitive to the field source effect and thus can effectively identify anomaly boundaries.

Key wordscontrolled-source electromagnetic method    fictitious wave field    finite difference method    3D forward modeling
收稿日期: 2023-08-27      修回日期: 2024-01-02      出版日期: 2024-10-20
ZTFLH:  P631.4  
基金资助:广西自然科学基金项目(2021GXNSFAA196056)
通讯作者: 林超(1994-)男,硕士,主要从事公路试验检验检测工作。Email:1847107924@qq.com
作者简介: 蒋志强(1975-)男,本科,主要从事高速公路、市政项目建设管理工作。Email:495425386@qq.com
引用本文:   
蒋志强, 林超, 杨庭伟, 宁晓斌. 基于虚拟波场的可控源三维电磁法正演[J]. 物探与化探, 2024, 48(5): 1348-1358.
JIANG Zhi-Qiang, LIN Chao, YANG Ting-Wei, NING Xiao-Bin. Forward modeling of a controllable-source 3D electromagnetic method based on fictitious wave field. Geophysical and Geochemical Exploration, 2024, 48(5): 1348-1358.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2024.1124      或      https://www.wutanyuhuatan.com/CN/Y2024/V48/I5/1348
Fig.1  虚拟波场中电磁场的空间离散示意
Fig.2  均匀半空间模型示意
Fig.3  均匀半空间中频率为100 Hz的电场分量Ex(a)和磁场分量Hy(c)的响应及相对误差(b、d)
Fig.4  均匀半空间中不同时刻虚拟电场分量E'x的xz面波场快照
Fig.5  均匀半空间中低阻三维异常体模型示意
a—xy平面断面;b—yz平面断面
Fig.6  低阻异常体不同时刻虚拟电场分量E'x的xz面波场快照
Fig.7  低阻异常体16 Hz电场分量Ex和视电阻率等值线
a—视电阻率等值线;b—电场分量Ex等值线
Fig.8  低阻异常体64 Hz电场分量Ex和视电阻率等值线
a—视电阻率等值线;b—电场分量Ex等值线
Fig.9  均匀半空间含低阻和高阻三维异常体模型示意
a—xy平面断面;b—xz平面断面
Fig.10  含低阻和高阻两个异常体不同时刻虚拟电场分量E'x的xz面波场快照
Fig.11  含低阻和高阻两个异常体16 Hz电场分量Ex和视电阻率等值线
a—视电阻率等值线;b—电场分量Ex等值线
Fig.12  含低阻和高阻两个异常体64 Hz电场分量Ex和视电阻率等值线
a—视电阻率等值线;b—电场分量Ex等值线
[1] 吴璐苹, 李荫槐. 可控源音频大地电磁法在地下水勘查中的应用研究[J]. 地球物理学报, 1996, 39(5):712-717.
[1] Wu L P, Li Y H. Application of controllable source audio frequency magnetotelluric method in groundwater exploration[J]. Journal of Geophysics, 1996, 39(5):712-717.
[2] 于昌明. CSAMT方法在寻找隐伏金矿中的应用[J]. 地球物理学报, 1998, 41(1):133-138.
[2] Yu C M. Application of CSAMT method in searching for concealed gold deposits[J]. Journal of Geophysics, 1998, 41(1):133-138.
[3] 黄力军, 陆桂福, 刘瑞德. 可控源音频大地电磁测深法应用实例[J]. 物探化探计算技术, 2006, 28(4):337-341.
[3] Huang L J, Lu G F, Liu R D. Application example of controllable source audio frequency magnetotelluric sounding[J]. Geophysical and Geochemical Prospecting Calculation Technology, 2006, 28(4):337-341.
[4] 刘瑞德, 黄力军, 孟银生. 可控源音频大地电磁测深法在地热田勘查中应用效果初探[J]. 工程地球物理学报, 2007, 4(2):86-89.
[4] Liu R D, Huang L J, Meng Y S. Preliminary study on the application effect of controllable source audio frequency magnetotelluric sounding in geothermal field exploration[J]. Journal of Engineering Geophysics, 2007, 4(2):86-89.
[5] 成江明. 可控源音频大地电磁法在隐伏煤矿区的应用[J]. 地球物理学进展, 2008, 23(4):1269-1272.
[5] Cheng J M. Application of controllable source audio frequency magnetotelluric method in hidden coal mine area[J]. Progress in Geophysics, 2008, 23(4):1269-1272.
[6] 董泽义, 汤吉, 周志明. 可控源音频大地电磁法在隐伏活动断裂探测中的应用[J]. 地震地质, 2010, 32(3):442-452.
doi: 10.3969/j.issn.0253-4967.2010.03.011
[6] Dong Z Y, Tang J, Zhou Z M. Application of controllable source audio frequency magnetotelluric method in detection of concealed active faults[J]. Seismology and Geology, 2010, 32(3):442-452.
[7] 张国鸿, 李仁和. 可控源音频大地电磁法深部找矿实验效果[J]. 物探与化探, 2010, 34(1):66-70.
[7] Zhang G H, Li R H. Experimental results of controlled source audio frequency magnetotelluric method for deep prospecting[J]. Geophysical and Geochemical Exploration, 2010, 34(1):66-70.
[8] Pridmore D F, Hohmann G W, Ward S H, et al. An investigation of finite- element modeling for electrical and electromagnetic data in three dimensions[J]. Geophysics, 1981, 46(7):1009-1024.
[9] Mitsuhata Y. 2-D electromagnetic modeling by finite-element method with a dipole source and topography[J]. Geophysics, 2000, 65(2):465-475.
[10] 顾观文, 吴文鹂, 李桐林. 大地电磁场三维地形影响的矢量有限元数值模拟[J]. 吉林大学学报:地球科学版, 2014, 44(5):1678-1686.
[10] Gu G W, Wu W L, Li T L. Vector finite element numerical simulation of three-dimensional terrain influence of magnetotelluric field[J]. Journal of Jilin University:Earth Science Edition, 2014, 44(5):1678-1686.
[11] Raiche A, Coggon J. Analytic Green's tensors for integral equation modelling[J]. Geophysical Journal of the Royal Astronomical Society, 1975, 42(3):1035-1038.
[12] 鲍光淑, 张碧星, 敬荣中, 等. 三维电磁响应积分方程法数值模拟[J]. 中南工业大学学报:自然科学版, 1999, 30(5):35-37.
[12] Bao G S, Zhang B X, Jing R Z, et al. Numerical simulation of three-dimensional electromagnetic response by integral equation method[J]. Journal of Central South University:Natural Science Edition, 1999, 30(5):35-37.
[13] 陈桂波, 汪宏年, 姚敬金. 用积分方程法模拟各向异性地层中三维电性异常体的电磁响应[J]. 地球物理学报, 2009, 52(8):234-241.
[13] Chen G B, Wang H N, Yao J J. Using integral equation method to simulate electromagnetic response of three-dimensional electrical anomaly body in anisotropic formation[J]. Chinese Journal of Geophysics, 2009, 52(8):234-241.
[14] 彭荣华, 胡祥云, 韩波. 基于拟态有限体积法的频率域可控源三维正演计算[J]. 地球物理学报, 2016, 59(10):3927-3939.
doi: 10.6038/cjg20161036
[14] Peng R H, Hu X Y, Han B. Three-dimensional forward calculation of controllable source in frequency domain based on pseudo-finite volume method[J]. Journal of Geophysics, 2016, 59(10):3927-3939.
[15] Mackie R L. Three-dimensional magnetotelluric modeling using difference equations—Theory and comparisons to integral equation solutions[J]. Geophysics, 1993, 58(2):215-226.
[16] 沈金松. 用有限差分法计算各向异性介质中多分量感应测井的响应[J]. 地球物理学进展, 2004, 19(1):101-107.
[16] Sheng J S. The finite difference method is used to calculate the response of multicomponent induction logging in anisotropic media[J]. Progress in Geophysics, 2004, 19(1):101-107.
[17] Liu Y H, Yin C C. Electromagnetic divergence correction for 3D anisotropic EM modeling[J]. Journal of Applied Geophysics, 2013,96:19-27.
[18] 朱成. 带地形频率域可控源电磁法三维正反演研究[D]. 长春: 吉林大学, 2016.
[18] Zhu C. Three-dimensional forward and inverse modeling of controllable source electromagnetic method in frequency domain with terrain[D]. Changchun: Jilin University, 2016.
[19] Lee K H, Liu G, Morrison H F. A new approach to modeling the electromagnetic response of conductive media[J]. Geophysics, 1989, 54(9):1180-1192.
[20] Maaø F. Fast finite-difference time-domain modeling for marine-subsurface electromagnetic problems[J]. SEG Technical Program Expanded Abstracts, 1949, 72(25):35-41.
[21] Mittet R. High-order finite-difference simulations of marine CSEM surveys using a correspondence principle for wave and diffusion fields[J]. Geophysics, 2010, 75(1):F33-F50.
[22] Berenger J P. A perfectly matched layer for the absorption of electromagnetic waves[J]. Journal of Computational Physics, 1994, 114(2):185-200.
[23] 徐正玉. 地—井瞬变电磁时域有限差分三维数值模拟[D]. 南昌: 东华理工大学, 2016.
[23] Xu Z Y. Three-dimensional finite-difference time-domain numerical simulation of surface-well transient electromagnetic[D]. Nanchang: East China University of Technology, 2016.
[24] Kuzuoglu M, Mittra R. Frequency dependence of the constitutive parameters of causal perfectly matched anisotropic absorbers[J]. IEEE Microwave & Guided Wave Lett., 1996, 6(12):447-449.
[25] Ryhove S K, Mittet R. 3D marine magnetotelluric modeling and inversion with the finite-difference time-domain method[J]. Geophysics, 2014, 79(6):E269-E286.
[26] Li G, Li Y G, Han B, et al. Application of the perfectly matched layer in 3-D marine controlled-source electromagnetic modelling[J]. Geophysical Journal International, 2018(1):333-344.
[27] Du Fort E C, Frankel S P. Stability conditions in the numerical treatment of parabolic differential equations[J]. Mathematical Tables and Other Aids to Computation, 1953, 7(43):135-152.
[28] Adhidjaja J I, Hohmann G W. A finite-difference algorithm for the transient electromagnetic response of a three-dimensional body[J]. Geophysical Journal International, 1989, 98(2):233-242.
[29] 葛德彪, 闫玉波. 电磁波时域有限差分方法[M]. 西安: 西安电子科技大学出版社, 2002.
[29] Ge D B, Yan Y B. Finite difference time domain method of electromagnetic wave[M]. Xi'an: Xi'an University of Electronic Science and Technology Press, 2002.
[30] Adhidjaja J I, Hohmann G W. A finite-difference algorithm for the transient electromagnetic response of a three-dimensional body[J]. Geophysical Journal International, 1989, 98(2):233-242.
[31] 吕英华. 计算电磁学的数值方法[M]. 北京: 清华大学出版社, 2006.
[31] Lyu Y H. A numerical method for calculating electromagnetism[M]. Beijing: Tsinghua University Press, 2006.
[32] Commer M, Newman G A. An accelerated time domain finite difference simulation scheme for three-dimensional transient electromagnetic modeling using geometric multigrid concepts[J]. Radio Science, 2006, 41(3):1-15.
[33] 辛会翠. 瞬变电磁法2.5维有限差分正演模拟研究[D]. 长沙: 中南大学, 2013.
[33] Xin H C. Research on 2.5D finite-difference forward modeling of transient electromagnetic method[D]. Changsha: Central South University, 2013.
[34] Hördt A, Dautel S, Tezkan B, et al. Interpretation of long-offset transient electromagnetic data from the Odenwald area,Germany,using two-dimensional modelling[J]. Geophysical Journal International, 2000, 140(3):577-586.
[35] Commer M, Hoversten G M, Um E S. Transient-electromagnetic finite-difference time-domain earth modeling over steel infrastructure[J]. Geophysics, 2015, 80(2):E147-E162.
[36] Hu Y, Egbert G, Ji Y, et al. A novel CFS-PML boundary condition for transient electromagnetic simulation using a fictitious wave domain method[J]. Radio Science, 2017, 52(1):118-131.
[1] 贾波, 张富明, 张利军, 刘皓皓, 郭亮亮, 宋伟, 张朝阳, 何海龙, 王刚. 巷道电性源瞬变电磁响应三维数值模拟[J]. 物探与化探, 2024, 48(5): 1185-1192.
[2] 李海, 赵攀, 李柯颖, 刘峥. 电性源瞬变电磁法虚拟波场解析推导[J]. 物探与化探, 2024, 48(5): 1193-1198.
[3] 刘洪华, 张卉, 王汝杰, 于鹏, 秦升强, 李文宇, 车荣祺. 滨海城市地质结构电阻率法三维模拟与应用[J]. 物探与化探, 2024, 48(4): 1037-1044.
[4] 孔繁祥, 谭捍东, 刘建勋. 海洋可控源电磁法与地震全波形二维联合反演研究[J]. 物探与化探, 2024, 48(1): 67-76.
[5] 周钟航, 张莹莹. 山峰对电性源地面瞬变电磁响应的影响及校正方法[J]. 物探与化探, 2023, 47(5): 1236-1249.
[6] 吴国培, 张莹莹, 赵华亮, 周钟航, 李医滨. 基于横向约束的中心回线瞬变电磁一维反演[J]. 物探与化探, 2023, 47(4): 1024-1032.
[7] 肖世鹏, 熊高君, 袁梦雨, 毛明秋, 王胜艺, 韦增涛. 黏声波高阶傅里叶有限差分法参数优化成像[J]. 物探与化探, 2022, 46(5): 1207-1213.
[8] 邓明, 王猛, 吴雯, 马晓茜, 罗贤虎. 海洋可控源电磁发射系统中的绝缘在线监测技术研究[J]. 物探与化探, 2022, 46(3): 537-543.
[9] 赵友超, 张军, 范涛, 姚伟华, 杨洋, 孙怀凤. 地—井瞬变电磁三维响应特征分析与异常体快速定位方法研究[J]. 物探与化探, 2022, 46(2): 383-391.
[10] 田郁, 乐彪. 复杂异常体模型下的三维MT倾子正演模拟[J]. 物探与化探, 2021, 45(4): 1021-1029.
[11] 智庆全, 武军杰, 王兴春, 孙怀凤, 杨毅, 张杰, 邓晓红, 陈晓东, 杜利明. 在瞬变电磁三维正演中的应用[J]. 物探与化探, 2021, 45(4): 1037-1042.
[12] 郭楚枫, 张世晖, 刘天佑. 三维磁场有限元—无限元耦合数值模拟[J]. 物探与化探, 2021, 45(3): 726-736.
[13] 刘炜, 王彦春, 毕臣臣, 徐仲博. 基于优化交错网格有限差分法的VSP逆时偏移[J]. 物探与化探, 2020, 44(6): 1368-1380.
[14] 顾观文, 武晔, 石砚斌. 基于矢量有限元的大地电磁快速三维正演研究[J]. 物探与化探, 2020, 44(6): 1387-1398.
[15] 甘团杰, 陈剑平, 杨玺, 周庆东, 曾亮. 海底电缆电磁场分布模拟与分析[J]. 物探与化探, 2020, 44(3): 550-558.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com