Please wait a minute...
E-mail Alert Rss
 
物探与化探  2023, Vol. 47 Issue (2): 290-299    DOI: 10.11720/wtyht.2023.1052
  地质调查·资源勘查 本期目录 | 过刊浏览 | 高级检索 |
轮古西地区奥陶系碳酸盐岩古暗河系统地震特征分析
但光箭1(), 周成刚1, 刘云宏2, 李相文1, 张亮亮1, 张明1, 王春阳1
1.中国石油集团东方地球物理勘探有限责任公司研究院 库尔勒分院,新疆 库尔勒 841000
2.中国石油集团东方地球物理勘探有限责任公司研究院,辽宁 盘锦 124010
Seismic characteristics of the paleo-underground river system in Ordovician carbonate paleo-buried hills in the western Lungu area
DAN Guang-Jian1(), ZHOU Cheng-Gang1, LIU Yun-Hong2, LI Xiang-Wen1, ZHANG Liang-Liang1, ZHANG Ming1, WANG Chun-Yang1
1. Korla Branch of GRI of BGP Inc.,Korla 841000,China
2. BGP Inc.,China National Petroleum Corporation,PanJing 124010,China
全文: PDF(8684 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

塔里木盆地轮古地区奥陶系碳酸盐岩古潜山内发现了大量岩溶缝洞型油藏,油气主要富集在缝洞储层中,这些缝洞储层主要跟碳酸盐岩古潜山内的古暗河系统有关。特别是在轮古西地区,古暗河系统最为发育,古暗河系统缝洞储层在纵、横向上具有较强的非均质性,搞清该区古暗河系统地震地质特征,是该区缝洞型油藏高效开发的关键。根据现代岩溶暗河特征,结合该区测井和钻井资料,建立暗河地质模型,开展模型正演模拟研究。研究结果表明,在致密灰岩背景下发育的地下暗河系统在地震剖面上表现为连续线性的强反射特征,暗河高度、宽度变窄,地震振幅变弱。地震上振幅越强,表明对应的暗河洞穴越大、充填物速度越低;振幅属性可以较准确地刻画地震上暗河的横向范围,频率、相位属性可以刻画地震上暗河的轮廓,但刻画的范围比实际暗河要大;暗河系统主河道易被泥质充填,分支暗河道被充填的概率低,是暗河储层发育的主要场所,也是油气富集的主要地区。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
但光箭
周成刚
刘云宏
李相文
张亮亮
张明
王春阳
关键词 轮古西正演碳酸盐岩古暗河系统    
Abstract

Many karst fracture-vug reservoirs have been found in the Ordovician carbonate paleo-buried hills in the Lungu area,Tarim Basin.Hydrocarbons are mainly enriched in these fracture-vug reservoirs,which are mainly related to the paleo-underground river system in carbonate paleo-buried hills.The paleo-underground river system is well developed,especially in the western Lungu area.The fracture-vug reservoirs related to the paleo-underground river system have strong longitudinal and lateral heterogeneity,and ascertaining the seismic and geological characteristics of the paleo-underground river system in this area is the key to the efficient development of fracture-vug reservoirs in this area.Based on the characteristics of modern karst underground rivers and the log and drilling data of this area,this study established a geological model of underground rivers for forward modeling.The study results are as follows.The underground river system developing under the tight limestone setting showed continuously linear strong reflections on the seismic profile.The seismic amplitude decreased as the height and width of underground rivers decreased,and higher seismic amplitude corresponded to larger underground river caves and lower filling velocity.The amplitude can accurately characterize the horizontal range of the underground river on the seismic profile.Meanwhile,the frequency and phase can describe the outline of the underground river on the seismic profile,but the outline described was larger than that of the real underground river.The main channels of the underground river system were prone to be filled with mud.By contrast,the branch channels had a low filling probability and thus serve as the main areas for both the occurrence of underground river reservoirs and the hydrocarbon accumulation.

Key wordswestern Lungu area    forward modeling    carbonate rock    paleo-underground river system
收稿日期: 2022-02-14      修回日期: 2023-01-03      出版日期: 2023-04-20
ZTFLH:  P631.4  
基金资助:东方地球物理公司重点科研项目“中西部叠合盆地走滑断裂地震识别技术及成藏控制作用研究”(03-02-2022)
引用本文:   
但光箭, 周成刚, 刘云宏, 李相文, 张亮亮, 张明, 王春阳. 轮古西地区奥陶系碳酸盐岩古暗河系统地震特征分析[J]. 物探与化探, 2023, 47(2): 290-299.
DAN Guang-Jian, ZHOU Cheng-Gang, LIU Yun-Hong, LI Xiang-Wen, ZHANG Liang-Liang, ZHANG Ming, WANG Chun-Yang. Seismic characteristics of the paleo-underground river system in Ordovician carbonate paleo-buried hills in the western Lungu area. Geophysical and Geochemical Exploration, 2023, 47(2): 290-299.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2023.1052      或      https://www.wutanyuhuatan.com/CN/Y2023/V47/I2/290
Fig.1  LG42井暗河井震标定
a—LG42井奥陶系柱状图;b—过LG42井地震剖面;c—过轮古42井反演剖面;d—LG42井区奥陶系潜山反演属性平面
Fig.2  过暗河地震剖面(a)和LG15-2井区奥陶系潜山振幅属性平面(b)
Fig.3  三维正演速度模型(a)和暗河三维地质模型(b)
Fig.4  正演成果地震剖面(a)、(b)和正演成果振幅属性平面(c)
Fig.5  暗河地质模型平面图和正演地震成果振幅、频率、相位属性平面
a—暗河地质模型平面;b—正演成果振幅属性平面;c—正演成果峰值频谱频率属性平面;d—正演成果平均瞬时相位属性平面
Fig.6  不同充填程度暗河地质模型和正演成果地震剖面
a—正演地质模型;b—正演地震剖面
Fig.7  高度相同长度变化的暗河模型正演与对应地震属性曲线
a—地质模型;b—正演成果剖面;c—暗河地震反射振幅曲线;d—暗河地震反射峰值频谱频率曲线;e—暗河地震反射平均瞬时相位曲线
Fig.8  轮古西—轮古7地区奥陶系潜山以下0~100 ms地震振幅均方根属性平面
Fig.9  轮古15井区暗河系统平面、剖面
a—LG15井区奥陶系潜山振幅属性平面;b—过主暗河地震剖面;c—过分支暗河地震剖面
[1] 胡中平. 溶洞地震波“串珠状”形成机理及识别方法[J]. 中国西部油气地质, 2006, 2(4):423-426.
[1] Hu Z P. Mechanism and distinction method forthe seismic "string beads" characteristic[J]. West China Petroleum Geosciences, 2006, 2(4):423-426.
[2] 吴俊峰, 姚姚, 撒利明. 碳酸盐岩特殊孔洞型构造地震响应特征分析[J]. 石油地球物理勘探, 2007, 42(2):180-185.
[2] Wu J F, Yao Y, Sa L M. Analysis on seismic response of special cavernous structure of carbonate[J]. Oil Geophysical Prospecting, 2007, 42(2):180-185.
[3] 李凡异, 魏建新, 狄帮让, 等. 碳酸盐岩溶洞的“串珠”状地震反射特征形成机理研究[J]. 石油地球物理勘探, 2012, 47(3):385-391.
[3] Li F Y, Wei J X, Di B R, et al. Research on the mechanism of the formation of the "beaded" seismic reflection characteristics of carbonate karst caves[J]. Oil Geophysical Prospecting, 2012, 47(3):385-391.
[4] 闵小刚, 顾汉明, 朱定. 塔河油田孔洞模型的波动方程正演模拟[J]. 勘探地球物理进展, 2006, 29(3):187-191.
[4] Ming X G, Gu H M, Zhu D. Wave equation forward modeling of cavern models in Tahe oil-field[J]. Progress in Exploration Geophysics, 2006, 29(3):187-191.
[5] 姚姚, 唐文榜. 深层碳酸盐岩岩溶风化壳洞缝型油气藏可检测性的理论研究[J]. 石油地球物理勘探, 2003, 38(6):623-629.
[5] Yao Y, Tang W B. Theoretical study on the detectability of deep carbonate karst weathered crust-cavity fractured oil and gas reservoirs[J]. Oil Geophysical Prospecting, 2003, 38(6):623-629.
[6] 孙东, 潘建国, 雍学善, 等. 碳酸盐岩储层垂向长串珠形成机制[J]. 石油地球物理勘探, 2010, 45(1):101-104.
[6] Sun D, Pan J G, Yong X S, et al. Formation mechanism of vertically long beads in carbonate reservoirs[J]. Oil Geophysical Prospecting, 2010, 45(1):101-104.
[7] 马灵伟, 顾汉明, 赵迎月, 等. 应用随机介质正演模拟刻画深水区台缘礁碳酸盐岩储层[J]. 石油地球物理勘探, 2013, 48(4):583-590.
[7] Ma L W, Gu H M, Zhao Y Y, et al. Using forward modeling of stochastic media to characterize carbonate reservoirs in platform margin reefs in deep water[J]. Oil Geophysical Prospecting, 2013, 48(4):583-590.
[8] 韩杰, 洪涛, 朱永峰, 等. 轮古油田奥陶系潜山洞穴型储层发育特征及油气分布控制因素[J]. 油气地质与采收率, 2016, 23(5):1-8.
[8] Han J, Hong T, Zhu Y F, et al. Characteristics of Ordovician buried-hill cave reservoir and controlling factors of petroleum distribution of Lungu oilfield[J]. Petroleum Geology and Recovery Efficiency, 2016, 23(5):1-8.
[9] 张军林, 田世澄, 郑多明. 塔北隆起西部缝洞型碳酸盐岩储层表征与评价[J]. 物探与化探, 2014, 38(3):497-503.
[9] Zhang J L, Tian S C, Zheng D M. Characterization and evaluation of fracture-cavity type carbonate reservoir in the western part of Northern Tarim uplift[J]. Geophysical and Geochemical Exploration, 2014, 38(3):497-503.
[10] 徐国强, 刘树根, 李国蓉, 等. 向源潜流侵蚀岩溶作用及其成因机理——以塔河油田早海西风化壳岩溶洞穴层为例[J]. 中国岩溶, 2005, 24(1):35-40.
[10] Xu G Q, Liu S G, Li G R, et al. The mechanism of retrogressive erosion and karstification:A case study of cave formation in early hersinian weathered crust in tahe oilfield[J]. Carsologica Sinica, 2005, 24(1):35-40.
[11] 李源, 鲁新便, 蔡忠贤, 等. 塔里木盆地塔河油田岩溶峡谷区海西早期洞穴系统发育模式[J]. 古地理学报, 2017, 19(2):364-372.
[11] Li Y, Lu X B, Cai Z X, et al. Development model of Hercynian cave system in karst canyon area of Tahe Oilfield,Tarim Basin[J]. Journal of Palaeogeography, 2017, 19(2):364-372.
[12] 李宗杰, 王勤聪. 塔河油田奥陶系古岩溶洞穴识别及预测[J]. 新疆地质, 2003, 21(2):181-184.
[12] Li Z J, Wang Q C. Identification and prediction of Ordovician ancient karst caves in Tahe Oilfield[J]. XinJiang Geology, 2003, 21(2):181-184.
[13] 赵军, 祁兴中, 夏宏权, 等. 测井资料在碳酸盐岩洞—裂缝型储层产能评价中的应用[J]. 现代地质, 2003, 17(1):99-104.
[13] Zhao J, Qi X Z, Xia H Q, et al. Application of well logging data in productivity evaluation of carbonate cave-fracture reservoir[J]. Geoscience, 2003, 17(1):99-104.
[14] 罗枭, 刘俊锋, 韩杰, 等. 塔里木盆地轮古潜山暗河发育特征及其与油气富集的关系[J]. 海相油气地质, 2018, 23(4):27-34.
[14] Luo X, Liu J F, Han J, et al. Development characteristics of underground river and its relationship with oil and gas accumulation in Lungu buried-hill,Tarim Basin[J]. Marine Origin Petroleum Geology, 2018, 23(4):27-34.
[15] 孙海宁, 王晓梅, 刘来祥. AVO技术在识别充填流体溶洞中的应用[J]. 物探与化探, 2008, 32(4):397-400.
[15] Sun H N, Wang X M, Liu L X. The application of avo to the predication of water-eroded caves filled with liquids for carbonate reservoirs[J]. Geophysical and Geochemical Exploration, 2008, 32(4):397-400.
[16] 张娟, 鲍典, 杨敏, 等. 塔河油田西部古暗河缝洞结构特征及控制因素[J]. 油气地质与采收率, 2018, 25(4):33-39.
[16] Zhang J, Bao D, Yang M, et al. Analysis on fracture-cave structure characteristics and its controlling factor of palaeo-subterranean rivers in the western Tahe Oilfield[J]. Petroleum Geology and Recovery Efficiency, 2018, 25(4):33-39.
[17] 朱学稳. 桂林地区灰岩洞穴的溶蚀形态[J]. 中国岩溶, 1982, 1(2):93-103.
[17] Zhu X W. Dissolution features of limestone caves in Guilin area[J]. Carsologica Sinica, 1982, 1(2):93-103.
[18] 雷川, 陈红汉, 苏奥, 等. 塔河地区奥陶系深埋岩溶洞穴特征及保存机制初探[J]. 岩性油气藏, 2014, 26(2):27-31.
[18] Lei C, Chen H H, Su A, et al. Characteristics and preservation mechanism of the Ordovician deep burial karst caves in Tahe area[J]. Lithologic Reservoirs, 2014, 26(2):27-31.
[19] 李阳. 塔河油田奥陶系碳酸盐岩溶洞型储集体识别及定量表征[J]. 中国石油大学学报:自然科学版, 2012, 36(1):1-7.
[19] Li Y. Ordovician carbonate fracture-cavity reservoirs identification and quantitative characterization in Tahe Oilfield[J]. Journal of China University of Petroleum:Edition of Natural Science, 2012, 36(1):1-7.
[20] 徐微, 陈冬梅, 赵文光, 等. 塔河油田奥陶系碳酸盐岩油藏溶洞发育规律[J]. 海相油气地质, 2011, 16(2):34-41.
[20] Xu W, Chen D M, Zhao W G, et al. Development regularity of karstic caverns of Ordovician carbonate reservoirs in Tahe oilfield[J]. Marine Origin Petroleum Geology, 2011, 16(2):34-41.
[21] 张林艳. 塔河油田奥陶系缝洞型碳酸盐岩油藏的储层连通性及其油(气)水分布关系[J]. 中外能源, 2006, 11(5):32-36.
[21] Zhang L Y. Reservoir connectivity and oil-water relationship of rock dissolved Carbonate oil reservoir in Tahe Oilfield[J]. China Foreign Energy, 2006, 11(5):32-36.
[22] 王立静. 塔河油田12区碳酸盐岩油藏溶洞特征研究[J]. 内蒙古石油化工, 2010(1):120-122.
[22] Wang L J. Study on Karst cave characteristics of Carbonate reservoir in area 12 of Tahe oilfield[J]. Inner Mongolia Petrochemical Industry, 2010(1):120-122.
[1] 周钟航, 张莹莹. 山峰对电性源地面瞬变电磁响应的影响及校正方法[J]. 物探与化探, 2023, 47(5): 1236-1249.
[2] 邢涛, 王垚, 李建慧. 基于B样条插值的瞬变电磁响应一维精确计算[J]. 物探与化探, 2023, 47(5): 1316-1325.
[3] 张昭, 殷全增, 张龙飞, 张大明, 张世晖, 黄国疏, 赵石峰, 杨彪, 台立勋, 张灯亮, 王进朝, 段刚. 综合物探技术在深部碳酸盐岩热储探测中的应用研究——以雄安新区为例[J]. 物探与化探, 2023, 47(4): 926-935.
[4] 张阳阳, 杜威, 王芝水, 缪旭煌, 张翔. 基于Lévay飞行的粒子群算法在大地电磁反演中的应用[J]. 物探与化探, 2023, 47(4): 986-993.
[5] 吴国培, 张莹莹, 赵华亮, 周钟航, 李医滨. 基于横向约束的中心回线瞬变电磁一维反演[J]. 物探与化探, 2023, 47(4): 1024-1032.
[6] 张入化, 张洞君, 黄建平, 苟其勇, 周嘉妮. 基于LSCG法和波数补偿的频率域二维地震正演模拟方法[J]. 物探与化探, 2023, 47(2): 384-390.
[7] 罗术, 陈争玉, 蓝宇骋, 刘阳飞, 段明杰. 等值反磁通瞬变电磁法探测滑坡堆积体的应用[J]. 物探与化探, 2023, 47(2): 523-529.
[8] 张明, 李相文, 金梦, 郑伟, 张磊, 马文高. 超深断控缝洞型储层迭代反演方法——以富满油田为例[J]. 物探与化探, 2023, 47(1): 22-30.
[9] 陈星河, 张超谟, 朱林奇, 张冲, 张占松, 郭建宏. 联合核磁共振测井与Thomeer模型评价碳酸盐岩储层饱和度[J]. 物探与化探, 2023, 47(1): 110-119.
[10] 赵军, 孟欣佳, 李冰, 刘志民. 坑道聚焦直流激电法电流场分布特性及探测影响因素分析[J]. 物探与化探, 2023, 47(1): 120-128.
[11] 张建伟, 杨卓静, 王新杰, 李胜涛, 赵玉军. 碳储深孔超声成像测井系统设计与应用[J]. 物探与化探, 2022, 46(6): 1500-1506.
[12] 孙海川, 王文忠, 李治中, 刘永亮. 多激励源瞬变电磁探测方法在煤矿采空区的应用[J]. 物探与化探, 2022, 46(5): 1306-1314.
[13] 谢锐, 阎建国, 陈琪. 叠前各向异性系数反演及在裂缝预测中的应用[J]. 物探与化探, 2022, 46(4): 968-976.
[14] 罗卫锋, 胡志方, 甘伏平, 张庆玉, 康海霞, 张云枭. 南方碳酸盐岩地区页岩气钻探井位选址中的综合物探方法应用[J]. 物探与化探, 2022, 46(4): 824-829.
[15] 石泽玉, 张志厚, 刘鹏飞, 范祥泰. 重力及其梯度异常正演的Moving-footprint大尺度模型分解方法[J]. 物探与化探, 2022, 46(3): 576-584.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com