Please wait a minute...
E-mail Alert Rss
 
物探与化探  2023, Vol. 47 Issue (1): 120-128    DOI: 10.11720/wtyht.2023.1116
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
坑道聚焦直流激电法电流场分布特性及探测影响因素分析
赵军1(), 孟欣佳2, 李冰2, 刘志民2
1.山西机电职业技术学院,山西 长治 046011
2.河北工程大学 机械与装备工程学院,河北 邯郸 056038
Current field distribution characteristics and detection influencing factors of the focusing DC IP method for tunnels
ZHAO Jun1(), MENG Xin-Jia2, LI Bing2, LIU Zhi-Min2
1. Shanxi Institute of Mechanical and Electrical Engineering, Changzhi 046011, China
2. College of Mechanical and Equipment Engineering, Hebei University of Engineering, Handan 056038, China
全文: PDF(5808 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

为探究坑道聚焦直流激电法电流场分布特性及其探测影响因素,利用有限单元法对空间场正常电位和异常电位进行求解,基于Comsol软件构建均质三维地电探测模型,采用四面体网格自适应算法进行剖分,对比分析数值求解精度。研究聚焦电流场分布变化规律,确定聚焦效应电流比系数取值范围。沿掘进断面的正前方构造异常地质的三维地电模型,利用等效电阻率法正演模拟掘进断面面积、干扰体、聚焦效应电流比系数等因素对激电效应参量的影响。结果表明:聚焦直流激电法对掘进断面前方不良地质体的探测具有较好的敏感性,坑道腔体内干扰体对目标异常体探测的影响可以忽略,旁侧干扰异常体距坑道底板距离越远,对目标异常体探测影响越小;增大掘进断面面积和聚焦效应电流比系数,可有效增加勘探距离。此研究可为聚焦直流激电法反演提供依据和参考,对推动聚焦电法勘探理论的发展具有重要意义。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵军
孟欣佳
李冰
刘志民
关键词 聚焦直流激电法电流场聚焦效应影响因素正演模拟    
Abstract

This study aims to explore the current field distribution characteristics and detection influencing factors of the focusing DC induced polarization (IP) method for tunnels. The study processes are as follows: the normal and anomalous potentials of the spatial electric field were calculated using the finite element method; a homogeneous 3D geoelectric detection model was constructed using the Comsol software, the model was divided into grid cells using the adaptive algorithm for tetrahedral mesh generation, and the numerical calculation precision was compared and analyzed; the distribution and change patterns of the focusing current field were investigated, and the range of the current ratio of the focusing effect was determined, and a 3D geoelectric model was constructed for anomalous geological structures in front of the tunneling section, and the influences of factors such as the area of the tunneling section, interference bodies, and current ratio coefficient of focusing effect on the IP effect parameters were simulated through the forward modeling using the equivalent resistivity method. The results are as follows: the focusing DC IP method was highly sensitive to the detection of the unfavorable geological bodies in front of the tunneling section; the impact of the interference bodies in the tunnel cavity on the detection of the anomalous target bodies can be ignored; the farther the lateral anomalous interference bodies from the tunnel floor, the less the impact on the detection of the anomalous target bodies, and the exploration distance can be effectively increased by increasing the area of the tunneling section and the current ratio coefficient of the focusing effect. This study can be utilized as a basis and reference for the inversion using the focusing DC IP method and is greatly significant for promoting the development of the focusing electrical exploration theory.

Key wordsfocusing DC IP method    current field    focusing effect    influencing factors    forward modeling
收稿日期: 2022-03-11      修回日期: 2022-06-13      出版日期: 2023-02-20
ZTFLH:  P631  
基金资助:河北省自然科学基金项目“煤巷多点电源双频激电法超前扫描探测理论关键技术及数据资料解释”(D2017402158);河北省自然科学基金项目“铬污染场地双频激电效应特性分数阶模型理论及检测机理研究”(D2022402003)
作者简介: 赵军(1972-),男,山西高平人,硕士,副教授,主要从事机电一体化技术研究工作。 Email:zj0355@163.com
引用本文:   
赵军, 孟欣佳, 李冰, 刘志民. 坑道聚焦直流激电法电流场分布特性及探测影响因素分析[J]. 物探与化探, 2023, 47(1): 120-128.
ZHAO Jun, MENG Xin-Jia, LI Bing, LIU Zhi-Min. Current field distribution characteristics and detection influencing factors of the focusing DC IP method for tunnels. Geophysical and Geochemical Exploration, 2023, 47(1): 120-128.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2023.1116      或      https://www.wutanyuhuatan.com/CN/Y2023/V47/I1/120
Fig.1  超前探测布极方案
Fig.2  三维网格剖分结果
Fig.3  数值解与解析解结果比较
Fig.4  空间电流场聚焦特性分布规律
Fig.5  异常体地电探测模型
Fig.6  坑道掘进断面面积影响
Fig.7  含干扰异常体地电探测模型
Fig.8  坑道内部干扰异常体影响
Fig.9  坑道旁侧干扰异常体影响
Fig.10  聚焦效应电流比系数影响
[1] Keller G V. An improved electrode system for use in electric logging[J]. Producers Monthly, 1949, 13(10):12-15.
[2] Doll H G. The laterolog:A new resistivity logging method with electrodes using an automatic focusing system[J]. Journal of Petroleum Technology, 1951, 3(11):305-316.
doi: 10.2118/951305-G
[3] Moran J H, Chemali R E. More on the laterolog device[J]. Geophysical Prospecting, 1979, 27(4):902-930.
doi: 10.1111/j.1365-2478.1979.tb01006.x
[4] Roy A, Apparao A. Depth of investigation in direct current methods[J]. Geophysics, 1971, 36(5):943-959.
doi: 10.1190/1.1440226
[5] Dey A, Meyer W H, Morrison H F et al. Electric field response of two-dimensional inhomogeneities to unipolar and bipolar electrode configurations[J]. Geophysics, 1975, 40(4):630-640.
doi: 10.1190/1.1440554
[6] Panissod C, Lajarthe M, Tabbagh A. Potential focusing:A new multi-electrode array concept,simulation study and field tests in archaeological prospecting[J]. Journal of Applied Geophysics, 1997, 38(1):1-23.
doi: 10.1016/S0926-9851(97)00011-6
[7] 黄启声. 垂向屏障等位电测法[J]. 物探与化探, 1981, 5(3):164-171.
[7] Huang Q S. Vertical barrier equipotential electrical measurement[J]. Geophysical and Geochemical Exploration, 1981, 5(3):164-171.
[8] 费锡铨. 聚焦垂直极化法[J]. 地质与勘探, 1983, 10:46-50.
[8] Fei X Q. Focusing vertical IP method[J]. Geology and Exploration, 1983, 10:46-50.
[9] Geophydraulik Data. Beam presentation[Z/OL]. Kirchvers:Geohydraulik data corp., 2004. http://www.geoexploration technologies.de/.
[10] Zhang G, Lyu Q T, Lin P R, et al. Electrode array and data density effects in 3D induced polarization tomography and applications for mineral exploration[J]. Arabian Journal of Geosciences, 2019, 12(6):1-17.
doi: 10.1007/s12517-018-4128-8
[11] 阮百尧, 邓小康, 刘海飞, 等. 坑道直流电阻率超前聚焦探测新方法研究[J]. 地球物理学报, 2009, 52(1):289-296.
[11] Ruan B Y, Deng X K, Liu H F, et a1. Research on a new method of advanced focus detection with DC resistivity in tunnel[J]. Chinese Journal of Geophysics, 2009, 52(1):289-296.
[12] 张力, 阮百尧, 吕玉增, 等. 坑道全空间直流聚焦超前探测模拟研究[J]. 地球物理学报, 2011, 54(4):1130-1139.
[12] Zhang L, Ruan B Y, Lyu Y Z, et al. Study of full-space numerica1 modeling of advanced exploration in tunnel with DC Focus resistivity method[J]. Chinese Journal of Geophysics, 2011, 54(4):1130-1139.
[13] Deng X K, Liu J X, Liu H F, et al. 3D finite element numerical simulation of advanced detection in roadway for DC focus method[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(7):2187-2193.
doi: 10.1016/S1003-6326(13)62716-8
[14] 刘海飞, 柳建新, 麻昌英. 直流激电反演解释系统研发与应用[J]. 工程地球物理学报, 2014, 11(3):376-382.
[14] Liu H F, Liu J X, Ma C Y. Development and application of inversion interpretation system with direct current IP data[J]. Chinese Journal of Engineering Geophysics, 2014, 11(3):376-382.
[15] 徐世浙. 地球物理中的有限单元法[M]. 北京: 科学出版社,1994.
[15] Xu S Z. FEM in geophysics[M]. BeiJing: Science Press,1994.
[16] Ángel R R, David P, Carlos T V. Fast 2.5D finite element simulations of borehole resistivity measurements[J]. Computational Geosciences, 2018, 22(5):1271-1281.
doi: 10.1007/s10596-018-9751-7
[17] Ren Z, Tang J. 3D direct current resistivity modeling with unstructured mesh by adaptive finite-element method[J]. Geophysics, 2010, 75(1):H7-H17.
doi: 10.1190/1.3298690
[18] Shahbazian A, Salem M K, Ghoranneviss M. Simulation by COMSOL of effects of probe on inductively coupled Argon Plasma[J]. Brazilian Journal of Physics, 2021, 51(3):351-360.
doi: 10.1007/s13538-020-00821-3
[1] 多吉卫色, 次仁旺堆, 尼玛洛卓, 周鹏, 尼玛次仁. 西藏白朗县农田系统硒含量特征及影响因素[J]. 物探与化探, 2023, 47(4): 1118-1126.
[2] 黄平安, 王夏青, 唐湘玲, 王玉堂, 李玮, 罗增, 吕飞亚. X射线荧光光谱岩心扫描影响因素及校正方法的研究进展[J]. 物探与化探, 2023, 47(3): 726-738.
[3] 李世宝, 杨立国, 熊万里, 马志超, 袁宏伟, 段吉学. 内蒙古巴彦淖尔市临河区富硒耕地硒形态特征及其影响因素[J]. 物探与化探, 2023, 47(2): 477-486.
[4] 邹山进洪. 闽侯县表层土壤及农产品硒含量特征[J]. 物探与化探, 2023, 47(1): 247-256.
[5] 侯进凯, 宋延斌, 朱瑞祯, 莘丰培, 周建川, 鲁富兰, 姚婕. 洛阳市伊川县鸦岭镇—汝阳县小店镇一带表层土壤硒形态研究[J]. 物探与化探, 2022, 46(2): 511-517.
[6] 崔瑞康, 孙建孟, 刘行军, 文晓峰. 低阻页岩电阻率主控因素研究[J]. 物探与化探, 2022, 46(1): 150-159.
[7] 田郁, 乐彪. 复杂异常体模型下的三维MT倾子正演模拟[J]. 物探与化探, 2021, 45(4): 1021-1029.
[8] 王光文, 王海燕, 李洪强, 李文辉, 庞永香. 地震正演技术在深反射地震剖面探测中的应用[J]. 物探与化探, 2021, 45(4): 970-980.
[9] 李欢, 黄勇, 张沁瑞, 贾三满, 徐国志, 冶北北, 韩冰. 北京平原区土壤地球化学特征及影响因素分析[J]. 物探与化探, 2021, 45(2): 502-516.
[10] 单希鹏, 谢汝宽, 梁盛军, 余学中. 直升机TEM测量影响因素分析[J]. 物探与化探, 2021, 45(1): 178-185.
[11] 牛雪, 何锦, 庞雅婕, 明圆圆. 三江平原西部土壤硒分布特征及其影响因素[J]. 物探与化探, 2021, 45(1): 223-229.
[12] 时章亮, 金立新, 廖超, 包雨函, 刘晓波, 邓欢, 徐克全. 四川雷波县重点耕地区土壤硒含量特征及其成因分析[J]. 物探与化探, 2020, 44(5): 1253-1260.
[13] 聂伟东, 李雪英, 万乔升, 王福霖, 何谞超. 基于affine类时频分析的旋回性薄互层时频特征影响因素分析[J]. 物探与化探, 2020, 44(4): 763-769.
[14] 余飞, 张风雷, 张永文, 王锐, 王佳彬. 重庆典型农业区土壤硒地球化学特征及影响因素[J]. 物探与化探, 2020, 44(4): 830-838.
[15] 谢薇, 杨耀栋, 侯佳渝, 菅桂芹, 李国成, 赵新华. 天津蔬菜主产区土壤中镉的有效性及关键调控因子研究[J]. 物探与化探, 2020, 44(4): 855-862.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com