Please wait a minute...
E-mail Alert Rss
 
物探与化探  2025, Vol. 49 Issue (1): 239-247    DOI: 10.11720/wtyht.2025.3603
  生态地质调查 本期目录 | 过刊浏览 | 高级检索 |
黄土高原地区土壤有机碳和无机碳储量及含量特征
段星星1,2,3(), 刘小龙2,3, 韩宝华1, 阿地来·赛提尼亚孜2,3, 金梦婷2,3, 刘彤1
1.石河子大学 水利建筑工程学院,新疆 石河子 832003
2.中国地质调查局 乌鲁木齐自然资源综合调查中心,新疆 乌鲁木齐 830000
3.自然资源部 塔里木河下游水资源与生态野外科学观测研究站,新疆 乌鲁木齐 830000
Stocks and content of organic and inorganic carbon in soil of the Loess Plateau region
DUAN Xing-Xing1,2,3(), LIU Xiao-Long2,3, HAN Bao-Hua1, Adilai·Saitiniyazi 2,3, JIN Meng-Ting2,3, LIU Tong1
1. School of Hydraulic Engineering, Shihezi University, Shihezi 832003, China
2. Urumqi Comprehensive Survey Center on Natural Resources, China Geological Survey, Urumqi 830000, China
3. Field Observation and Research Station of Water Resources and Ecological Effect in Low Reaches of Tarim River Basin,Urumqi 830000, China
全文: PDF(4635 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

土壤碳库在调节全球碳平衡和减缓温室气体方面有着重要的地位,估算土壤碳储量对评价陆地生态系统碳循环具有重要意义。利用研究区土地质量地球化学调查获取的土壤碳数据,采用“单位土壤碳量”方法,估算了西北地区各层土壤全碳、有机碳和无机碳储量,分析了不同土壤、土地利用和地形地貌类型下的土壤有机碳和无机碳中碳含量特征。结果表明,研究区上下全层(0~2.0 m)土壤中累计求得总碳10 099.4 Mt,表层(0~0.2 m)总碳1 224.8 Mt,上层(0~1.0 m)5 345.9 Mt,下层(1.0~2.0 m)4 753.5 Mt,各层中总碳含量以无机碳为主,占比自上而下逐渐增大,有机碳主要集中在表层。无机碳含量高值区主要分布在青海湟水谷地、甘肃陇中、陕西北部和宁夏南部黄土高原等地区,有机碳高值区主要分布在祁连山一带。风沙土具有最低的表、深层有机碳、无机碳和总碳含量;黑垆土和黄绵土具有最高的表层无机碳含量;黑毡土具有最高的表层有机碳含量;黑垆土具有最高的深层有机碳含量,且具有最高的表层和深层土壤总碳含量。森林具有最高的表层和深层有机碳及表层总碳含量;草原具有最高的表层无机碳和总碳含量;耕地具有最高的深层无机碳含量;裸地具有最低的无机碳、有机碳和总碳含量。山地具有最高的表层和深层土壤有机碳和总碳含量;黄土具有最高的表层和深层无机碳含量;平原总体介于黄土和山地之间。高海拔地区具有极高的有机碳含量。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
段星星
刘小龙
韩宝华
阿地来·赛提尼亚孜
金梦婷
刘彤
关键词 黄土高原有机碳无机碳碳储量土地质量地球化学    
Abstract

Soil carbon pools play a significant role in regulating global carbon balance and mitigating greenhouse gases. Hence, estimating soil carbon stocks is critical for assessing the carbon cycle in terrestrial ecosystems. Based on the soil carbon data obtained from the land quality geochemical survey in the study area, this study estimated the stocks of total, organic, and inorganic carbon of various soil layers in Northwest China using the unit soil carbon amount (USCA) method. It analyzed the content characteristics of organic and inorganic carbon in soil under different soil, land use, and topographic types. The results of this study are as follows: (1) All the soil layers at depths ranging from 0 to 2 m in the study area exhibited total carbon of 10 099.4 Mt, including 1 224.8 Mt in the topsoil layer (0~0.2 m), 5 345.9 Mt in the upper soil layer (0~1.0 m), and 4 753.5 Mt in the lower soil layer (1.0~2.0 m). Inorganic carbon predominated in all the soil layers, with its proportion gradually increasing from top to bottom, whereas organic carbon was principally concentrated in the topsoil layer; (2) The high-value areas of inorganic carbon content were primarily distributed in the Huangshui Valley of Qinghai Province, and the Loess Plateau region covering the Longzhong area of Gansu Province, northern Shaanxi Province, and southern Ningxia Province. In contrast, the high-value areas of organic carbon content were chiefly distributed in the Qilian Mountains; (3) The aeolian sandy soil exhibited the lowest organic, inorganic, and total carbon contents in the topsoil and deep soil layers. The dark loessial soil and the loessal soil showed the highest inorganic carbon content in the topsoil layer. The dark felty soil and the dark loessial soil displayed the highest organic carbon contents in the topsoil and deep soil layers, respectively. Additionally, the dark felty soil had the highest total carbon content in the topsoil and deep soil layers; (4) Forests exhibited the highest organic carbon content in the topsoil and deep soil layers, and the highest total carbon content in the topsoil layer. Grasslands showed the highest inorganic and total carbon contents in the topsoil layer. Cultivated land had the highest inorganic carbon content in the deep soil layer. Bare land manifested the lowest inorganic, organic, and total carbon contents; (5) Mountains displayed the highest organic and total carbon contents in the topsoil and deep soil layers. Loess had the highest inorganic carbon content in the topsoil and deep soil layers. Plains showed intermediate carbon contents generally between those of loess and mountains. Besides, high-altitude areas manifested extremely high organic carbon content.

Key wordsLoess Plateau    organic carbon    inorganic carbon    carbon stock    land quality geochemistry
收稿日期: 2022-12-03      修回日期: 2024-02-26      出版日期: 2025-02-20
ZTFLH:  X142  
  X825  
基金资助:新疆维吾尔自治区自然科学基金面上项目(2022D01A149);中国地质调查局自然资源综合调查指挥中心科创基金项目(KC20230013);中国地质调查局地质调查项目(DD20220887)
作者简介: 段星星(1983-),男,2006年毕业于中南大学,主要从事地球化学调查研究工作。Email:dxingxing@mail.cgs.gov.cn
引用本文:   
段星星, 刘小龙, 韩宝华, 阿地来·赛提尼亚孜, 金梦婷, 刘彤. 黄土高原地区土壤有机碳和无机碳储量及含量特征[J]. 物探与化探, 2025, 49(1): 239-247.
DUAN Xing-Xing, LIU Xiao-Long, HAN Bao-Hua, Adilai·Saitiniyazi , JIN Meng-Ting, LIU Tong. Stocks and content of organic and inorganic carbon in soil of the Loess Plateau region. Geophysical and Geochemical Exploration, 2025, 49(1): 239-247.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2025.3603      或      https://www.wutanyuhuatan.com/CN/Y2025/V49/I1/239
Fig.1  研究区采样点位分布
Fig.2  研究区土壤各层中有机碳和无机碳储量占比
Fig.3  研究区表层(a)和深层(b)土壤无机碳含量分布
Fig.4  研究区表层(a)和深层(b)土壤有机碳含量分布
Fig.5  研究区土壤类型占比
Fig.6  研究区不同土壤类型碳含量(单位:%)
土地利
用类型
样品数 表层土壤含量/% 深层土壤含量/%
无机碳 有机碳 总碳 无机碳 有机碳 总碳
草地 5904 1.414 1.116 2.530 1.432 0.475 1.907
耕地 3662 1.379 0.825 2.205 1.501 0.351 1.852
森林 792 1.163 1.502 2.665 1.103 0.564 1.667
裸地 175 0.932 0.648 1.580 0.968 0.314 1.282
Table 1  研究区不同土地利用类型有机碳、无机碳和总碳含量
地形
地貌
样品数 表层土壤含量/% 深层土壤含量/%
无机碳 有机碳 总碳 无机碳 有机碳 总碳
黄土 4628 1.551 0.745 2.296 1.637 0.342 1.979
山地 2534 1.298 1.884 3.182 1.231 0.782 2.013
平原 2859 1.262 0.959 2.222 1.348 0.352 1.700
高海拔 405 1.159 4.208 5.367 0.942 1.604 2.546
中海拔 4703 1.299 0.634 1.932 1.338 0.266 1.604
低海拔 1420 1.211 0.848 2.059 1.515 0.269 1.784
Table 2  研究区不同地形地貌有机碳、无机碳和总碳含量
[1] Pope J. How can global warming be traced to CO2?[J]. Scientific American, 2006, 295(6):124.
pmid: 17144360
[2] Jha S K, Mishra V K, Sharma D K, et al. Fluoride in the environment and its metabolism in humans[J]. Reviews of Environmental Contamination Toxicology, 2011, 211(211):121-142.
[3] Norby R J, Luo Y. Evaluating ecosystem responses to rising atmospheric CO2 and global warming in a multi-factor world[J]. New phytologist, 2004, 162(2):281-293.
[4] Lupi A, Steinbach H S, Ciarlo E, et al. Organic carbon stored in soils under different land uses and soil textures in southeast Argentinean Mesopotamia[J]. Geoderma Regional, 2021,27:e00435.
[5] Jabro J, Sainju U, Stevens W, et al. Carbon dioxide flux as affected by tillage and irrigation in soil converted from perennial forages to annual crops[J]. Journal of Environmental Management, 2008, 88(4):1478-1484.
pmid: 17716807
[6] Doetterl S, Stevens A, Six J, et al. Soil carbon storage controlled by interactions between geochemistry and climate[J]. Nature Geoscience, 2015, 8(10):780-783.
doi: 10.1038/NGEO2516
[7] Zhao L, Wu X, Wang Z, et al. Soil organic carbon and total nitrogen pools in permafrost zones of the Qinghai-Tibetan Plateau[J]. Scientific Reports, 2018, 8(1):3656.
doi: 10.1038/s41598-018-22024-2 pmid: 29483565
[8] Yang G, Xiu J W, Xiang L L, et al. Impacts of land use and salinization on soil inorganic and organic carbon in the middle-lower Yellow River Delta[J]. Pedosphere:An International Journal, 2021, 31(6):839-848.
[9] Bohn H L. Estimate of organic carbon in world soils[J]. Soil Science Society of America Journal, 1976, 40(3):468-470.
[10] Bughio MA, Wang P, Meng F, et al. Neoformation of pedogenic carbonates by irrigation and fertilization and their contribution to carbon sequestration in soil[J]. Geoderma, 2016,262:12-19.
[11] Wang X, Xu M, Wang J, et al. Fertilization enhancing carbon sequestration as carbonate in arid cropland:Assessments of long-term experiments in northern China[J]. Plant & Soil, 2014,380:89-100.
[12] 奚小环, 张建新, 廖启林, 等. 多目标区域地球化学调查与土壤碳储量问题——以江苏、湖南、四川、吉林、内蒙古为例[J]. 第四纪研究, 2008, 28(1):58-67.
[12] Xi X H, Zhang J X, Liao Q L, et al. Multi-purpose regional geochemical survey and soil carbon reserves problem:Examples of Jiangsu,Henan,Sichuan,Jilin Provinces and Innermongolia[J]. Quaternary Sciences, 2008, 28(1):58-67.
[13] 陈富荣, 梁红霞, 邢润华, 等. 安徽省土壤固碳潜力及有机碳汇 (源) 研究[J]. 土壤通报, 2017, 48(4):843-851.
[13] Chen F R, Liang H X, Xin R H, et al. Soil carbon sequestration potential and organic carbon sink/source in Anhui Province[J]. Chinese Journal of Soil Science, 2017, 48(4):843-851.
[14] 姜蓝齐, 臧淑英, 张丽娟, 等. 松嫩平原农田土壤有机碳变化及固碳潜力估算[J]. 生态学报, 2017, 37(21):7068-7081.
[14] Jiang L Q, Zang S Y, Zhang L J, et al. Temporal and spatial variations of organic carbon and evaluation of carbon sequestration potential in the agricultural topsoil of the Songnen Plain[J]. Acta Ecologica Sinica, 2017, 37(21):7068-7081.
[15] Li Z, Han F, Su Y, et al. Assessment of soil organic and carbonate carbon storage in China[J]. Geoderma, 2007, 138(1-2):119-126.
[16] 赵宁, 周蕾, 庄杰, 等. 中国陆地生态系统碳源/汇整合分析[J]. 生态学报, 2021, 41(19):7648-7658.
[16] Zhao N, Zhou L, Zhuang J, et al. Integration analysis of the carbon sources and sinks in terrestrial ecosystems,China[J]. Acta Ecologica Sinica, 2021, 41(19):7648-7658.
[17] Wu H, Guo Z, Gao Q, et al. Distribution of soil inorganic carbon storage and its changes due to agricultural land use activity in China[J]. Agriculture,Ecosystems Environment, 2009, 129(4):413-421.
[18] 李春亮, 王翔, 张炜, 等. 黄土高原西段表层土壤有机碳储量及时空变化规律[J]. 现代地质, 2022, 36(2):655-661.
[18] Li C L, Wang X, Zhang W, et al. Topsoil organic carbon storage and its spatial and tempora variation in the western Loess Plateau[J]. Geoscience, 2022, 36(2):655-661.
[19] 王荔, 曾辉, 张扬建, 等. 青藏高原土壤碳储量及其影响因素研究进展[J]. 生态学杂志, 2019, 38(11):3506-3515.
[19] Wang L, Zeng H, Zhang Y J, et al. A review of research on soil carbon storage and its influencing factors in the Tibetan Plateau[J]. Chinese Journal of Ecology, 2019, 38(11):3506-3515.
[20] Richter J D D, Mobley M L. Monitoring Earth's critical zone[J]. Science, 2009, 326(5956):1067-1068.
doi: 10.1126/science.1179117 pmid: 19965414
[21] 李龙, 秦富仓, 姜丽娜, 等. 土地利用方式和地形对半干旱区土壤有机碳含量的影响[J]. 土壤通报, 2019, 51(2):406-412.
[21] Li L, Qin F C, Jiang L N, et al. Effects of land use type and terrain on soil organic carbon (SOC) content in semi-arid region[J]. Chinese Journal of Soil Science, 2019, 51(2):406-412.
[22] Fu B, Liu Y, Lyu Y, et al. Assessing the soil erosion control service of ecosystems change in the Loess Plateau of China[J]. Ecological Complexity, 2011, 8(4):284-293.
[23] Wu J, Miao C, Wang Y, et al. Contribution analysis of the long-term changes in seasonal runoff on the Loess Plateau,China,using eight Budyko-based methods[J]. Journal of Hydrology, 2017,545:263-275.
[24] Yang J, Huang X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019[J]. Earth Syst. Sci. Data, 2021, 13(8):3907-3925.
doi: 10.5194/essd-13-3907-2021
[25] 奚小环, 杨忠芳, 夏学齐, 等. 基于多目标区域地球化学调查的中国土壤碳储量计算方法研究[J]. 地学前缘, 2009, 16(1):194-205.
[25] Xi X H, Yang Z F, Xia X Q, et al. Calculation techniques for soil carbon storage of China based on multi-purpose geochemical survey[J]. Earth Science Frontiers, 2009, 16(1):194-205.
[26] Wang Y, Li Y, Ye X, et al. Profile storage of organic/inorganic carbon in soil:From forest to desert[J]. Science of the Total Environment, 2010, 408(8):1925-1931.
[27] Tan W F, Zhang R, Cao H, et al. Soil inorganic carbon stock under different soil types and land uses on the Loess Plateau region of China[J]. Catena, 2014,121:22-30.
[28] Yang Y, Fang J, Ji C, et al. Widespread decreases in topsoil inorganic carbon stocks across China's grasslands during 1980s-2000s[J]. Global Change Biology, 2012, 18(12):3672-3680.
[29] An H, Li Q L, Yan X, et al. Desertification control on soil inorganic and organic carbon accumulation in the topsoil of desert grassland in Ningxia,northwest China[J]. Ecological Engineering, 2019,127:348-355.
[30] 刘东生, 安芷生, 袁宝印. 中国的黄土与风尘堆积[J]. 第四纪研究, 1985, 6(1):113-25.
[30] Liu D S, An Z S, Yuan B Y. Eolian process and dust mantle (Loess) in China[J]. Quaternary Sciences, 1985, 6(1):113-125.
[31] 吴锡浩, 安芷生, 王苏民. 黄土与古季风[J]. 地学前缘, 1997, 4(1):77.
[31] Wu X H, An Z S, Wang S M, Loess and paleomonsoons[J]. Earth Science Frontiers, 1997, 4(1):77.
[32] 张建龙. 国家林业局令[N]. 中华人民共和国国务院公报,2018:66-68.
[32] Zhang J L, Order of the state forestry administration[N]. The Bulletin of the State Council of the People's Republic of China,2018:66-68.
[33] 林旭, 李长安. 黄河碎屑物质和中国西北沙漠/沙地存在物源联系吗?[J]. 地球科学, 2022, 47(10):3633-3647.
[33] Lin X, Li C A. Are Detrital materials from the Yellow River associated with desert/sandy land provenances in Northwest China?[J]. Earth Science, 2022, 47(10):3633-3647.
[34] 刘倩倩, 杨小平. 毛乌素沙地和库布齐沙漠风成沙粒度参数的空间变化及其成因[J]. 中国沙漠, 2020, 40(5):158-168.
doi: 10.7522/j.issn.1000-694X.2020.00088
[34] Liu Q Q, Yang X P. Spatial variations of grain size parameters of dune sands in the Mu Us Sandy Land and Hobq Sand Sea,northern China and its potential causes[J]. Journal of Desert Research, 2020, 40(5):158-168.
[35] Jin Z, Dong Y, Wang Y, et al. Natural vegetation restoration is more beneficial to soil surface organic and inorganic carbon sequestration than tree plantation on the Loess Plateau of China[J]. Science of the Total Environment, 2014,485:615-623.
[36] Wang X, Li Y, Gong X, et al. Storage,pattern and driving factors of soil organic carbon in an ecologically fragile zone of northern China[J]. Geoderma, 2019,343:155-165.
[37] Ritchie J C, Mccarty G W, Venteris E R, et al. Soil and soil organic carbon redistribution on the landscape[J]. Geomorphology, 2007, 89(1/2):163-171.
[38] Batjes N. Soil carbon stocks and projected changes according to land use and management:A case study for Kenya[J]. Soil Use Management, 2004, 20(3):350-356.
[39] Zeng X, Zhang W, Cao J, et al. Changes in soil organic carbon,nitrogen,phosphorus,and bulk density after afforestation of the "Beijing-Tianjin Sandstorm Source Control" program in China[J]. Catena, 2014,118:186-194.
[40] Post W M, Emanuel W R, Zinke P J, et al. Soil carbon pools and world life zones[J]. Nature, 1982, 298(5870):156-159.
[41] Leifeld J, Bassin S, Fuhrer J. Carbon stocks in Swiss agricultural soils predicted by land-use,soil characteristics,and altitude[J]. Agriculture,Ecosystems Environment, 2005, 105(1/2):255-266.
[42] 王占礼, 常庆瑞. 黄土高原降雨因素对土壤侵蚀的影响[J]. 西北农业大学学报, 1998, 26(4):101-105.
[42] Wang Z L, Chang Q R. Effects of rainfall factors on soil erosion in Loess Plateau[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 1998, 26(4):101-105.
[43] Zinn Y L, Lal R, Resck D V. Texture and organic carbon relations described by a profile pedotransfer function for Brazilian Cerrado soils[J]. Geoderma, 2005, 127(1/2):168-173.
[44] Baritz R, Seufert G, Montanarella L, et al. Carbon concentrations and stocks in forest soils of Europe[J]. Forest Ecology Management, 2010, 260(3):262-277.
[45] Wiesmeier M, Hübner R, Barthold F, et al. Amount,distribution and driving factors of soil organic carbon and nitrogen in cropland and grassland soils of southeast Germany (Bavaria)[J]. Agriculture,ecosystems environment, 2013,176:39-52.
[46] Houghton R A. Tropical deforestation and atmospheric carbon dioxide[J]. Climatic Change, 1991, 19(1/2):99-118.
[47] Davidson E A, Ackerman I L. Changes in soil carbon inventories following cultivation of previously untilled soils[J]. Biogeochemistry, 1993,20:161-193.
[48] Wei X, Shao M, Gale W, et al. Global pattern of soil carbon losses due to the conversion of forests to agricultural land[J]. Scientific Reports, 2014, 4(1):4062.
[49] Balesdent J, Chenu C, Balabane M. Relationship of soil organic matter dynamics to physical protection and tillage[J]. Soil Tillage Research, 2000, 53(3/4):215-230.
[50] Xiang Y, Liu Y, Yue X, et al. Factors controlling soil organic carbon and total nitrogen stocks following afforestation with Robinia pseudoacacia on cropland across China[J]. Forest Ecology Management, 2021, 494(1):119-274.
[51] Chang R, Fu B, Liu G, et al. The effects of afforestation on soil organic and inorganic carbon:A case study of the Loess Plateau of China[J]. Catena, 2012,95:145-152.
[1] 夏炎, 王润涛, 杜倩倩, 王喜宽, 吕红杰, 侯进凯, 李炳辉. 洛阳市农田土壤碳汇规律研究[J]. 物探与化探, 2025, 49(1): 215-228.
[2] 阿地来·赛提尼亚孜, 段星星, 何峻岭, 王翠翠, 董越. 塔里木盆地北缘绿洲土壤碳储量及其碳密度的分布特征[J]. 物探与化探, 2025, 49(1): 229-238.
[3] 刘凯, 戴慧敏, 刘国栋, 梁帅, 魏明辉, 杨泽, 宋运红. 基于土壤有机碳含量的黑土层厚度预测及影响因素分析[J]. 物探与化探, 2024, 48(5): 1368-1376.
[4] 刘庆宇, 马瑛, 程莉, 沈骁, 张亚峰, 苗国文, 黄强, 韩思琪. 青海东部表层土壤有机碳密度及其空间分布特征[J]. 物探与化探, 2023, 47(4): 1098-1108.
[5] 张一鹤, 杨泽, 戴慧敏, 刘国栋, 韩晓萌, 李秋燕. 穆棱河—兴凯湖平原土壤有机碳、全氮的时空变异特征[J]. 物探与化探, 2022, 46(5): 1050-1055.
[6] 杨泽, 张一鹤, 戴慧敏, 刘国栋, 刘凯, 许江. 兴凯湖平原表层土壤有机碳空间变异的主控因素[J]. 物探与化探, 2022, 46(5): 1076-1086.
[7] 刘国栋, 李禄军, 戴慧敏, 许江, 刘凯, 张一鶴, 杨泽. 松辽平原土壤碳库变化及其原因分析[J]. 物探与化探, 2021, 45(5): 1109-1120.
[8] 吴松, 陈政, 李元彬, 黄钊, 张林, 许胜超, 王开贵. 云南省者竜—嘎洒地区Cr、Ni地球化学特征及土壤污染风险防控建议[J]. 物探与化探, 2021, 45(2): 517-527.
[9] 胡梦颖, 徐进力, 朱颖涛, 张鹏鹏, 张灵火, 徐红纳, 白金峰, 张勤. 氧化燃烧—气相色谱法测定土壤中的有机碳含量[J]. 物探与化探, 2020, 44(6): 1435-1440.
[10] 王月平, 张立, 崔玉军, 吕石佳. 宝清县东部土壤硒含量特征及其与土壤性质的关系[J]. 物探与化探, 2019, 43(4): 904-911.
[11] 彭敏, 李括, 刘飞, 唐世琪, 马宏宏, 杨柯, 杨峥, 郭飞, 成杭新. 东北平原区地块尺度土地质量地球化学评价合理采样密度研究[J]. 物探与化探, 2019, 43(2): 338-350.
[12] 黄子龙, 林清梅, 范汝海. 广西全州县富硒土壤地球化学特征[J]. 物探与化探, 2018, 42(2): 381-385.
[13] 鲍丽然, 严明书, 贾中民, 龚媛媛. 重庆西部表层土壤有机碳储量与密度分布[J]. 物探与化探, 2015, 39(1): 180-185.
[14] 刘文辉. 甘肃省张掖—永昌地区土壤有机碳密度 估算及其空间分布特征[J]. 物探与化探, 2013, 37(3): 552-556.
[15] 刘海良, 苏文利, 罗振佳, 李磊. 页岩气、油页岩资源的电阻率法勘查[J]. 物探与化探, 2012, 36(3): 503-506.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com