Please wait a minute...
E-mail Alert Rss
 
物探与化探  2022, Vol. 46 Issue (5): 1050-1055    DOI: 10.11720/wtyht.2022.0047
  东北黑土地地球化学调查专栏 本期目录 | 过刊浏览 | 高级检索 |
穆棱河—兴凯湖平原土壤有机碳、全氮的时空变异特征
张一鹤1,2,3(), 杨泽1,2,3, 戴慧敏1,2,3, 刘国栋1,2,3, 韩晓萌1,2,3, 李秋燕1,2,3()
1.中国地质调查局 沈阳地质调查中心,辽宁 沈阳 110034
2.自然资源部 黑土地演化与生态效应重点实验室,辽宁 沈阳 110034
3.辽宁省黑土地演化与生态效应重点实验室,辽宁 沈阳 110034
Spatio-temporal variations in the soil organic carbon and total nitrogen contents in the Muling River-Xingkai Lake Plain
ZHANG Yi-He1,2,3(), YANG Ze1,2,3, DAI Hui-Min1,2,3, LIU Guo-Dong1,2,3, HAN Xiao-Meng1,2,3, LI Qiu-Yan1,2,3()
1. Shenyang Center of China Geological Survey, Shenyang 110034, China
2. Key Laboratory of Black Soil Evolution and Ecological Effect, Ministry of Natural Resources, Shenyang 110034, China
3. Key Laboratory of Black Soil Evolution and Ecological Effect, Liaoning Province, Shenyang 110034, China
全文: PDF(1104 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

土壤有机碳(SOC)和全氮(TN)不仅是可持续农业的基础,更是土壤肥力的关键,对维持土壤养分的含量具有重要作用。基于穆棱河—兴凯湖平原1:25万土地质量地球化学调查土壤养分元素数据和第二次全国土壤普查土壤养分元素数据,运用地统计学方法和GIS技术,探讨1979~2019年穆兴平原表层土壤SOC含量和TN含量的时空变化规律。结果表明:研究区表层土壤SOC含量和TN含量主要处于三等以上水平,呈现出整体较丰富和丰富、局部缺乏的分布特征。经过40年演变,SOC含量下降了25.65%,TN含量下降了29.87%,C/N比增加了6.00%;与1979年相比,2019年的表层土壤不同土壤类型中SOC、TN含量都在下降,只有水稻土增加;自然生态系统转变为农田导致SOC、TN含量都在下降;说明土壤类型和土地利用方式变化等因素对研究区土壤养分的空间变异程度有着显著影响。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张一鹤
杨泽
戴慧敏
刘国栋
韩晓萌
李秋燕
关键词 穆棱河—兴凯湖平原有机碳全氮时空变异    
Abstract

The soil organic carbon (SOC) and total nitrogen (TN) contents serve as the basis for sustainable agriculture and the key to soil fertility and play an important role in maintaining the soil nutrient content. Based on the soil nutrient element data obtained from the 1:250,000 land quality geochemical survey and the second national soil census, this study investigated the spatio-temporal variations in the SOC and TN contents in the surface soil of the Muling River-Xingkai Lake Plain from 1979 to 2019 using the geostatistical method and the geographic information system (GIS) technique. The results show that the SOC and TN contents in the surface soil of the study area are mainly at grade Ⅲ or above. They are rich or highly rich overall but are deficient locally. During 40 years of evolution, the SOC and TN contents decreased by 25.65% and 29.87%, respectively, and the C/N ratio increased by 6.00%. Compared with those in 1979, the SOC and TN contents in the surface soil decreased in different soil types except for paddy soil. The transition from the natural ecosystem into farmland also decreased the SOC and TN contents. These results indicate that factors such as changes in soil types and land uses have significant effects on the degree of the spatial variations in soil nutrients in the study area.

Key wordsMuling River-Xingkai Lake Plain    organic carbon    total nitrogen    spatial and temporal variation
收稿日期: 2022-01-27      修回日期: 2022-07-23      出版日期: 2022-10-20
ZTFLH:  P632  
基金资助:中国地质调查局项目“东北黑土地1:25万土地质量地球化学调查”(121201007000161312);“兴凯湖平原及松辽平原西部土地质量地球化学调查”(DD20190520)
通讯作者: 李秋燕
作者简介: 张一鹤(1992-),女,工程师,东北农业大学土壤学专业毕业,主要从事土地质量地球化学调查工作。Email:343847617@qq.com
引用本文:   
张一鹤, 杨泽, 戴慧敏, 刘国栋, 韩晓萌, 李秋燕. 穆棱河—兴凯湖平原土壤有机碳、全氮的时空变异特征[J]. 物探与化探, 2022, 46(5): 1050-1055.
ZHANG Yi-He, YANG Ze, DAI Hui-Min, LIU Guo-Dong, HAN Xiao-Meng, LI Qiu-Yan. Spatio-temporal variations in the soil organic carbon and total nitrogen contents in the Muling River-Xingkai Lake Plain. Geophysical and Geochemical Exploration, 2022, 46(5): 1050-1055.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2022.0047      或      https://www.wutanyuhuatan.com/CN/Y2022/V46/I5/1050
序号 元素 检出限 分析方法
实测 要求 单位
1 N 17 20 10-3 容量法
2 Corg 0.02 0.1 10-3 容量法
Table 1  土壤中氮和有机质的分析方法及检出限
指标 样品数 最小值 最大值 平均值 标准差 变异系数/% 偏度系数 峰度系数
2019年 SOC 3920 3.47 52.41 26.47 8.53 32.24 0.53 0.07
TN 3920 0.22 4.30 2.23 0.68 30.38 0.47 -0.03
C/N 3920 4.63 23.75 11.85 1.20 10.14 1.59 11.85
1979年 SOC 3920 9.92 80.05 35.60 18.43 51.78 0.88 0.08
TN 3920 1.00 7.30 3.18 1.64 51.48 1.08 0.08
C/N 3920 7.65 16.38 11.18 1.30 11.66 -0.29 0.08
Table 2  研究区土壤SOC、TN和C/N统计特征
指标 拟合模型 块金值(C0) 基台值(C0+C) [C0/(C0+C)]/% 变程/km 拟合度R2
SOC 指数模型 46.3 143.6 32.2 697.8 0.955
TN 球状模型 0.26 0.799 32.9 311 0.971
C/N 指数模型 0.72 1.433 50 61.8 0.894
Table 3  土壤SOC、TN、C/N半方差函数模型参数
Fig.1  土壤SOC、TN、C/N空间分布
指标 一等/
丰富
二等/
较丰富
三等/
中等
四等/
较缺乏
五等/
缺乏
TN 面积/km2 10120 4308 1944 112 124
比例/% 60.93 25.94 11.71 0.67 0.75
SOC 面积/km2 10364 4120 1812.00 260 52
比例/% 62.40 24.81 10.91 1.57 0.31
Table 4  土壤SOC、TN等级分布面积及比例
土壤
类型
2019年 1979年
SOC TN C/N SOC TN C/N
沼泽土 30.14 2.57 11.74 54.03 4.74 11.59
草甸土 25.93 2.19 11.82 28.58 2.53 11.71
白浆土 25.90 2.21 11.72 27.04 2.50 10.59
黑土 25.44 2.12 11.96 30.66 2.73 11.32
暗棕壤 24.98 2.05 12.15 41.04 3.61 11.40
水稻土 24.72 2.04 11.99 22.13 2.03 10.69
Table 5  不同土壤类型下SOC、TN、C/N含量特征
土地利
用变化
样本数 SOC变化 TN变化 C/N变化
10-3 10-3
湿地→旱地 232 -13.12 -1.25 0.19
湿地→水田 629 -11.81 -1.20 0.51
林地→旱地 327 -11.39 -1.19 1.05
旱田→水田 284 -8.47 -0.80 0.22
旱地-旱地 716 -4.84 -0.58 0.93
草地→旱地 62 -3.60 -0.44 0.72
水田-水田 118 1.43 -0.08 0.92
Table 6  主要开垦类型土壤SOC、TN、C/N含量变化
[1] 张一鹤, 杨泽, 戴慧敏, 等. 穆棱河—兴凯湖平原土地质量地球化学评价[J]. 地质与资源, 2021, 30(1):62-70.
[1] Zhang Y H, Yang Z, Dai H M, et al. Geochemical evaluation of land quality in Muling River-Xingkai Lake Plain[J]. Geology and Resources, 2021, 30(1):62-70.
[2] 刘家福, 马帅, 李帅, 等. 1982—2016年东北黑土区植被NDVI动态及其对气候变化的响应[J]. 生态学报, 2018, 38(21):7647-7657.
[2] Liu J F, Ma S, Li S, et al. Changes in vegetation NDVI from 1982 to 2016 and its responses to climate change in the black-soil area of Northeast China[J]. Acta Ecologica Sinica, 2018, 38(21):7647-7657.
[3] 李发鹏, 李景玉, 徐宗学. 东北黑土区土壤退化及水土流失研究现状[J]. 水土保持研究, 2006, 13(3):50-54.
[3] Li F P, Li J Y, Xu Z X. The status quo of black soil degradation and water and soil loss in Northeast China[J]. Research of Soil and Water Conservation, 2006, 13(3):50-54.
[4] 徐晓斌, 王清. 我国黑土退化研究现状与展望[J]. 地球与环境, 2005, 33(S1):588-592.
[4] Xu X B, Wang Q. The current status and prospeis of research in black earth degradation in northeast China[J]. Earth and Environment, 2005, 33(S1):588-592.
[5] 李忠佩, 吴大付. 红壤水稻土有机碳库的平衡值确定及固碳潜力分析[J]. 土壤学报, 2006, 43(1):46-52.
[5] Li Z P, Wu D F. Organic C content at steady state and potential of C sequestration of paddy soils in subtropical China[J]. Acta Pedologica Sinica, 2006, 43(1):46-52.
[6] 胡延斌, 肖国举, 仇正跻, 等. 西北半干旱区农田土壤有机碳和全氮分布特征及其对地膜玉米产量的影响[J]. 水土保持研究, 2021, 28(1):58-64,403.
[6] Hu Y B, Xiao G J, Qiu Z J, et al. Distribution characteristics of soil organic carbon and total nitrogen and its influence on film mulched maize in farmland in northwest semiarid region[J]. Research of Soil and Water Conservation, 2021, 28(1):58-64,403.
[7] 张世文, 黄元仿, 苑小勇, 等. 龚关县域尺度表层土壤质地空间变异与因素分析[J]. 中国农业科学, 2011, 44(6):1154-1164.
[7] Zhang S W, Huang Y F, Yuan X Y, et al. The spatial variability and factor analyses of top soil texture on a county scale[J]. Scientia Agricultura Sinica, 2011, 44 (6):1154-1164.
[8] Wiesmeier M, Hübner R, Barthold F, et al.Amount, distribution and driving factors of soil organic carbon and nitrogen in cropland and grassland soils of southeast Germany (Bavaria)[J]. Agriculture,Ecosystems and Environment, 2013, 176:39-52.
doi: 10.1016/j.agee.2013.05.012
[9] Huang B, Sun W X, Zhao Y C, et al. Temporal and spatial variability of soil organic matter and total nitrogen in an agricultural ecosystem as affected by farming practices[J]. Geoderma, 2007, 139:336-345.
doi: 10.1016/j.geoderma.2007.02.012
[10] 王志齐, 杜兰兰, 赵慢, 等. 黄土区不同退耕方式下土壤碳氮的差异及其影响因素[J]. 应用生态学报, 2016, 27(3):716-722.
doi: 10.13287/j.1001-9332.201603.017
[10] Wang Z Q, Du L L, Zhao M, et al. Differences in soil organic carbon and total nitrogen and their impact factors under different restoration patterns in the Loess Plateau[J]. Chinese Journal of Applied Ecology, 2016, 27(3):716-722.
[11] 宋小艳, 王长庭, 胡雷, 等. 若尔盖退化高寒草甸土壤团聚体结合有机碳变化[J]. 生态学报, 2022, 42(4):1538-1548.
[11] Song X Y, Wang C T, Hu L, et al. Changes in soil aggregate-associated organic carbon of degraded alpine meadow in the Zoige Plateau[J]. Acta Ecologica Sinica, 2022, 42(4):1538-1548.
[12] 范如芹, 梁爱珍, 杨学明, 等. 耕作方式对黑土团聚体含量及特征的影响[J]. 中国农业科学, 2010, 43(18):3767-3775.
[12] Fan R Q, Liang A Z, Yang X M, et al. Effects of tillage on soil aggregates in black soils in Northeast China[J]. Scientia Agricultura Sinica, 2010, 43(18):3767-3775.
[13] 张玉铭, 毛任钊, 胡春胜, 等. 华北太行山前平原农田土壤养分的空间变异性研究[J]. 应用生态学报, 2004, 15(11):2049-2054.
[13] Zhang Y M, Mao R Z, Hu C S, et al. Spatial variability of farmland soil nutrients at Taihang piedmont[J]. Chinese Journal of Applied Ecology, 2004, 15(11):2049-2054.
[14] 孙淑梅, 张连志, 闫冬. 吉林省德惠—农安地区土地质量地球化学评估[J]. 现代地质, 2008, 22(6):998-1002.
[14] Sun S M, Zhang L Z, Yan D. Experimental study on method and technique of land quality geochemical assessment[J]. Geoscience, 2008, 22(6):998-1002.
[15] 罗由林, 李启权, 王昌全, 等. 川中丘陵县域土壤碳氮比空间变异特征及其影响因素[J]. 应用生态学报, 2015, 26(1):177-185.
[15] Luo Y L, Li Q Q, Wang C Q, et al. Spatial variability of soil C/N ratio and its influence factors at a county scale in hilly area of Mid-Sichuan Basin,Southwest China[J]. Chinese Journal of Applied Ecology, 2015, 26(1):177-185.
[16] Sanchez P A, Ahamed S. Environmental science:Digital soil map of the world[J]. Science, 2009, 325(5941):680.
doi: 10.1126/science.1175084 pmid: 19661405
[17] Ustin S L, Roberts D A, Pinzón J, et al. Estimating canopy water content of chaparral shrubs using optical methods[J]. Remote Sensing of Environment, 1998, 65(3):280-291.
doi: 10.1016/S0034-4257(98)00038-8
[18] 刘国栋, 戴慧敏, 杨泽, 等. 三江平原土壤碳库时空变化和影响因素研究[J]. 现代地质, 2021, 35(2):443-454.
[18] Liu G D, Dai H M, Yang Z, et al. Temporal and spatial changes of soil carbon pool and its influencing factors in the Sanjiang Plain[J]. Geoscience, 2021, 35(2):443-454.
[19] 赵明松, 张甘霖, 王德彩, 等. 徐淮黄泛平原土壤有机质空间变异特征及主控因素分析[J]. 土壤学报, 2013, 50(1):1-11.
[19] Zhao M S, Zhang G L, Wang D C, et al. Spatial variability of soil organic matter and its dominating factors in Xu-Huai alluvial plain[J]. Acta Pedologica Sinica, 2013, 50(1):1-10.
[20] 顾成军, 史学正, 于东升, 等. 省域土壤有机碳空间分布的主控因子——土壤类型与土地利用比较[J]. 土壤学报, 2013, 50(3):425-432.
[20] Gu C J, Shi X Z, Yu D S, et al. Main factor controlling SOC spatial distribu tion at the province scale as affected by soil type and land use[J]. Acta Pedologica Sinica, 2013, 50(3):425-432.
[21] Robin G, Viacheslav I, Adamchuk. Precision agriculture and food security[J]. Science, 2010, 327(5967):828-831.
doi: 10.1126/science.1183899 pmid: 20150492
[22] Deng Q, Cheng X L, Yang Y H, et al. Carbon-nitrogen interactions during afforestation in central China[J]. Soil Biology and Biochemistry, 2014, 69:119-122.
doi: 10.1016/j.soilbio.2013.10.053
[23] Nie X J, Zhang H B, Su Y Y. Soil carbon and nitrogen fraction dynamics affected by tillage erosion[J]. Scientific Reports, 2019, 9(1):23.
doi: 10.1038/s41598-018-36632-5
[24] Sourdille P, Singh S, Cadalen T, et al. Microsatellite-based deletion bin system for the establishment of geneticphysical map relationships in wheat (Triticum aestivum L.)[J]. Functional & Integrative Genomics, 2004, 4(1):12-25.
[25] Rossel R, Webster R. Predicting soil properties from the Australian soil visible-nearinfrared spectroscopic database[J]. European Journal of Soil Science, 2012, 63(6):848-860.
doi: 10.1111/j.1365-2389.2012.01495.x
[1] 刘庆宇, 马瑛, 程莉, 沈骁, 张亚峰, 苗国文, 黄强, 韩思琪. 青海东部表层土壤有机碳密度及其空间分布特征[J]. 物探与化探, 2023, 47(4): 1098-1108.
[2] 杨泽, 张一鹤, 戴慧敏, 刘国栋, 刘凯, 许江. 兴凯湖平原表层土壤有机碳空间变异的主控因素[J]. 物探与化探, 2022, 46(5): 1076-1086.
[3] 王鹏, 赵君, 刘拓, 周一凡, 魏锦萍, 王磊. 半干旱区有机质与全氮空间变异的尺度效应特征——以延安市为例[J]. 物探与化探, 2022, 46(4): 1011-1020.
[4] 刘国栋, 李禄军, 戴慧敏, 许江, 刘凯, 张一鶴, 杨泽. 松辽平原土壤碳库变化及其原因分析[J]. 物探与化探, 2021, 45(5): 1109-1120.
[5] 胡梦颖, 徐进力, 朱颖涛, 张鹏鹏, 张灵火, 徐红纳, 白金峰, 张勤. 氧化燃烧—气相色谱法测定土壤中的有机碳含量[J]. 物探与化探, 2020, 44(6): 1435-1440.
[6] 王月平, 张立, 崔玉军, 吕石佳. 宝清县东部土壤硒含量特征及其与土壤性质的关系[J]. 物探与化探, 2019, 43(4): 904-911.
[7] 鲍丽然, 严明书, 贾中民, 龚媛媛. 重庆西部表层土壤有机碳储量与密度分布[J]. 物探与化探, 2015, 39(1): 180-185.
[8] 刘文辉. 甘肃省张掖—永昌地区土壤有机碳密度 估算及其空间分布特征[J]. 物探与化探, 2013, 37(3): 552-556.
[9] 刘文辉, 李春亮, 吴永强. 甘肃省兰州—白银地区土壤有机碳库储量估算与空间分布特征[J]. 物探与化探, 2012, 36(3): 367-371.
[10] 刘海良, 苏文利, 罗振佳, 李磊. 页岩气、油页岩资源的电阻率法勘查[J]. 物探与化探, 2012, 36(3): 503-506.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com