Please wait a minute...
E-mail Alert Rss
 
物探与化探  2024, Vol. 48 Issue (5): 1368-1376    DOI: 10.11720/wtyht.2024.1436
  生态地质调查 本期目录 | 过刊浏览 | 高级检索 |
基于土壤有机碳含量的黑土层厚度预测及影响因素分析
刘凯1,2,3(), 戴慧敏1,2,3, 刘国栋1,2,3, 梁帅1,2,3, 魏明辉1,2,3, 杨泽1,2,3, 宋运红1,2,3()
1.中国地质调查局 沈阳地质调查中心,辽宁 沈阳 110034
2.自然资源部 黑土地演化与生态效应重点实验室,辽宁 沈阳 110034
3.辽宁省黑土地演化与生态效应重点实验室,辽宁 沈阳 110034
Organic carbon content-baesd prediction and influencing factors of black soil layer thicknesses
LIU Kai1,2,3(), DAI Hui-Min1,2,3, LIU Guo-Dong1,2,3, LIANG Shuai1,2,3, WEI Ming-Hui1,2,3, YANG Ze1,2,3, SONG Yun-Hong1,2,3()
1. Shenyang Center of China Geological Survey, Shenyang 110034,China
2. Key Laboratory of Black Soil Evolution and Ecological Effect, Ministry of Natural Resources, Shenyang 110034,China
3. Key Laboratory of Black Soil Evolution and Ecological Effect, Liaoning Province, Shenyang 110034,China
全文: PDF(4274 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

黑土层厚度是黑土的一项基本属性,是衡量土壤肥力和侵蚀程度的重要指标,其空间预测的研究对支撑我国黑土地保护工程、保障粮食安全具有重要意义。本文参考土壤系统分类中黑土层的诊断特征,将有机碳含量高于成土母质6×10-3作为黑土层的判定标准,并利用有机碳在土壤垂向剖面上的指数分布规律,推算出黑土层厚度的计算公式。基于多目标区域地球化学调查获取的62 896个表层土壤和15 687个深层土壤的有机碳测试数据,对松辽平原黑土层厚度进行了详尽的空间预测分析,并探讨了黑土层厚度与土壤类型和气候因子之间的关系。 结果显示,松辽平原黑土层厚度在0~165 cm之间,中位数为23.33 cm。黑土层空间分布呈现出显著的非均质性,整体呈西南薄、东北厚的分布特点。沼泽土和泥炭土的黑土层平均厚度最大,在60~80 cm之间,其次为黑土,平均厚度为56 cm,白浆土和草甸土的黑土层平均厚度在40~50 cm之间。黑土层厚度的空间分布与气候条件关系紧密,主要表现为与温度呈显著的负相关,与降雨量呈正相关。同时,研究发现年均温0 ℃是影响黑土厚度的一个重要温度阈值,当年均温高于0 ℃时,黑土层平均厚度在80 cm以上,并且不再随温度发生变化。随着气候变暖,年均温0 ℃等温线的南移可能对黑土层厚度产生重要影响。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘凯
戴慧敏
刘国栋
梁帅
魏明辉
杨泽
宋运红
关键词 黑土地黑土层厚度土壤有机碳多目标区域地球化学中国东北    
Abstract

Black soil layer thicknesses, anessential attribute of black soil,serves as a significant indicator for measuring the fertility and erosion degree of black soil. Their spatial prediction holds critical significance for supporting China's black land conservation and ensuring food security.Considering the diagnostic characteristics of black soil layers in soil system classification, this study regarded soil layers with organic carbon content higher than 6×10-3 of soil parent materials as black soil layers.Moreover, it derived the calculation formula for the thicknesses of black soil layers relying on the exponential distribution pattern of organic carbon in the vertical soil profile. Based on the 62 896 topsoil and 15 687 deepsoil organic carbon data obtained from the multi-purpose regional geochemical survey, this study conducted detailed spatial prediction of the thicknesses of black soil layers in the Songliao Plain and analyzed their relationship with soil types and climate factors. Key findings are as follows:(1) The thicknesses of black soil layers in the Songliao Plain range from 0 to 165 cm, with a median of 23.33 cm;(2) The spatial distribution of black soil layers exhibits significant heterogeneity, characterized by thin southwestern and thick northeastern portions;(3) The black soil layers of swampy soil and peat soil manifest the largest average thicknesses between 60 and 80 cm, followed by those of typical black soil (average thickness: 56 cm) and those of albic soil and meadow soil (average thickness: 40~50 cm);(4) The spatial distributions of the thicknesses of black soil layers are closely associated with climatic conditions, primarily showing a significant negative correlation with temperature and a positive correlation with rainfall;(5) The mean annual temperature of 0 ℃ is a significant temperature threshold for the development of thick black soil layers.Above this temperature, the average thickness of black soil layers exceeds 80 cm and no longer changes with temperature. With global warming, the southward shift of this 0 ℃ is otherm may significantly influence the thicknesses of black soil layers.

Key wordsblack land    thickness of a black soil layer    soil organic carbon    multi-purpose regional geochemical survey    Northeast China
收稿日期: 2023-10-11      修回日期: 2024-01-08      出版日期: 2024-10-20
ZTFLH:  X825  
  X142  
基金资助:中国科学院战略性先导科技专项(XDA28020302);中国地质调查局项目(DD20221779)
通讯作者: 宋运红(1983-),女,高级工程师,从事生态地质和土地质量调查研究综合研究工作。Email:yun-hong408@163.com
作者简介: 刘凯(1989-),男,高级工程师,2014年毕业于吉林大学,主要从事生态地质调查研究工作。Email:liu.kai@mail.cgs.gov.cn
引用本文:   
刘凯, 戴慧敏, 刘国栋, 梁帅, 魏明辉, 杨泽, 宋运红. 基于土壤有机碳含量的黑土层厚度预测及影响因素分析[J]. 物探与化探, 2024, 48(5): 1368-1376.
LIU Kai, DAI Hui-Min, LIU Guo-Dong, LIANG Shuai, WEI Ming-Hui, YANG Ze, SONG Yun-Hong. Organic carbon content-baesd prediction and influencing factors of black soil layer thicknesses. Geophysical and Geochemical Exploration, 2024, 48(5): 1368-1376.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2024.1436      或      https://www.wutanyuhuatan.com/CN/Y2024/V48/I5/1368
Fig.1  松辽平原数据范围及气候条件
Fig.2  不同情况下土壤有机碳含量在垂向上的指数分布曲线
Fig.3  松辽平原表层土壤(a)和深层土壤(b)有机碳含量空间分布
Fig.4  黑土层厚度计算结果
a—黑土层厚度空间分布;b—黑土层厚度统计直方图;c—表层土壤有机碳含量与黑土层厚度散点图
Fig.5  不同类型土壤黑土层平均厚度统计
Fig.6  黑土层厚度与年均温和降雨量散点图
[1] 宋运红, 刘凯, 戴慧敏, 等. 松辽平原典型黑土—古土壤剖面AMS14C年龄首次报道[J]. 中国地质, 2020, 47(6):1926-1927.
[1] Song Y H, Liu K, Dai H M, et al. The first report of the AMS14C age of mollisol-paleosol profile of Songliao Plain[J]. Geology in China, 2020, 47(6):1926-1927.
[2] 戴慧敏, 刘凯, 宋运红, 等. 东北地区黑土退化地球化学指示与退化强度[J]. 地质与资源, 2020, 29(6):510-517.
[2] Dai H M, Liu K, Song Y H, et al. Black soil degradation and intensity in Northeast China:Geochemical indication[J]. Geology and Resources, 2020, 29(6):510-517.
[3] 宋运红, 刘凯, 戴慧敏, 等. 35年来东北松辽平原耕地土壤全氮时空变化[J]. 中国地质, 2021, 48(1):332-333.
[3] Song Y H, Liu K, Dai H M, et al. Spatio-temporal variation of total N content in farmland soil of Songliao Plain in Northeast China during the past 35 years[J]. Geology in China, 2021, 48(1):332-333.
[4] Gu Z J, Xie Y, Gao Y, et al. Quantitative assessment of soil productivity and predicted impacts of water erosion in the black soil region of northeastern China[J]. Science of the Total Environment, 2018,637:706-716.
[5] Ergina E I, Gorbunov R V, Stashkina E F. Maximum humus horizon thickness as a criterion for identifying standard soils in the Crimean Plain[J]. Russian Agricultural Sciences, 2019, 45(5):453-457.
[6] Wang S Q, Zhu S L, Zhou C H. Characteristics of spatial variability of soil thickness in China[J]. Geographical Research, 2001, 5(2):94-99.
[7] Malone B, Searle R. Improvements to the Australian national soil thickness map using an integrated data mining approach[J]. Geoderma, 2020,377:114579.
[8] Voronin A Y, Savin I Y. GPR diagnostics of chernozem humus horizon thickness[J]. Russian Agricultural Sciences, 2018, 44(3):250-255.
[9] 刘凯, 魏明辉, 戴慧敏, 等. 东北黑土区黑土层厚度的时空变化[J]. 地质与资源, 2022, 31(3):434-442,394.
[9] Liu K, Wei M H, Dai H M, et al. Spatiotemporal variation of black soil layer thickness in black soil region of Northeast China[J]. Geology and Resources, 2022, 31(3):434-442,394.
[10] 中国科学院南京土壤研究所土壤系统分类课题组, 中国土壤系统分类课题研究协作组. 中国土壤系统分类检索(第三版)[M]. 合肥: 中国科学技术大学出版社, 2001.
[10] Soil System Classification Research Group, Nanjing Institute of Soil Science, Chinese Academy of Sciences, China Soil System Classification Research Group. Classification andretrieval of soil systemsin China (third edition)[M]. Hefei: University of Science and Technology of China Press, 2001.
[11] Soil Survey Staff. Keys to soil taxonomy (12th ed.)[R]. United States Department of Agriculture,Natural Resources Conservation Service, 2014.
[12] Li M, Xi X H, Xiao G Y, et al. National multi-purpose regional geochemical survey in China[J]. Journal of Geochemical Exploration, 2014,139:21-30.
[13] Zhang Q. A complete set of analytical schemes and nanlytical data monitoring systems for determinations of 54 components in multi-purpose geochemical mapping[J]. Quaternary Sciences, 2005, 25(3):292-297.
[14] Iuss W G W. World reference base for soil resources 2014[M]. Rome:FAO, 2015.
[15] 刘颖, 魏丹, 李玉影, 等. 黑龙江省主要类型土壤剖面养分分布研究[J]. 黑龙江农业科学, 2015(11):31-35.
[15] Liu Y, Wei D, Li Y Y, et al. Study on nutrient distribution of soil profiles of main soil type in Heilongjiang Province[J]. Heilongjiang Agricultural Sciences, 2015(11):31-35.
[16] 李春丽, 董军, 王鸿斌, 等. 不同利用方式对黑钙土腐殖质组分剖面分布特征的影响[J]. 东北林业大学学报, 2022, 50(8):104-110.
[16] Li C L, Dong J, Wang H B, et al. Profile distribution characteristics of humus components in chernozem soil under different land use types[J]. Journal of Northeast Forestry University, 2022, 50(8):104-110.
[17] 郝翔翔, 韩晓增, 李禄军, 等. 土地利用方式对黑土剖面有机碳分布及碳储量的影响[J]. 应用生态学报, 2015, 26(4):965-972.
[17] Hao X X, Han X Z, Li L J, et al. Profile distribution and storage of soil organic carbon in a black soil as affected by land use types[J]. Chinese Journal of Applied Ecology, 2015, 26(4):965-972.
[18] 奚小环, 杨忠芳, 夏学齐, 等. 基于多目标区域地球化学调查的中国土壤碳储量计算方法研究[J]. 地学前缘, 2009, 16(1):194-205.
[18] Xi X H, Yang Z F, Xia X Q, et al. Calculation techniques for soil carbon storage of China based on multi-purpose geochemical survey[J]. Earth Science Frontiers, 2009, 16(1):194-205.
[19] 刘国栋, 李禄军, 戴慧敏, 等. 松辽平原土壤碳库变化及其原因分析[J]. 物探与化探, 2021, 45(5):1109-1120.
[19] Liu G D, Li L J, Dai H M, et al. Change in soil carbon pool in Songliao Plain and its cause analysis[J]. Geophysical and Geochemical Exploration, 2021, 45(5):1109-1120.
[20] Li M, Han X Z, Du S L, et al. Profile stock of soil organic carbon and distribution in croplands of Northeast China[J]. Catena, 2019,174:285-292.
[21] Leinemann T, Preusser S, Mikutta R, et al. Multiple exchange processes on mineral surfaces control the transport of dissolved organic matter through soil profiles[J]. Soil Biology and Biochemistry, 2018,118:79-90.
[22] Kindler R, Siemens J, Kaiser K, et al. Dissolved carbon leaching from soil is a crucial component of the net ecosystem carbon balance[J]. Global Change Biology, 2011, 17(2):1167-1185.
[23] 张之一. 黑土开垦后黑土层厚度的变化[J]. 黑龙江八一农垦大学学报, 2010, 22(5):1-3.
[23] Zhang Z Y. The thickness changes of ah horizon after the phaeozems cultivated[J]. Journal of Heilongjiang Bayi Agricultural University, 2010, 22(5):1-3.
[24] Weil R R, Brady N C. The nature and properties of soils(15th edition)[M]. England: Pearson Education, 2015.
[25] Shi Z, Allison S D, He Y J, et al. The age distribution of global soil carbon inferred from radiocarbon measurements[J]. Nature Geoscience, 2020,13:555-559.
[26] Lyu H, Watanabe T, Kilasara M, et al. Soil organic carbon pools controlled by climate and geochemistry in tropical volcanic regions[J]. Science of the Total Environment, 2021,761:143277.
[27] Doetterl S, Stevens A, Six J, et al. Soil carbon storage controlled by interactions between geochemistry and climate[J]. Nature Geoscience, 2015,8:780-783.
[28] Lehmann J, Kleber M. The contentious nature of soil organic matter[J]. Nature, 2015, 528(7580):60-68.
[29] Luo Z K, Wang G C, Wang E L. Global subsoil organic carbon turnover times dominantly controlled by soil properties rather than climate[J]. Nature Communications, 2019, 10(1):3688.
doi: 10.1038/s41467-019-11597-9 pmid: 31417092
[30] Davidson E A, Janssens I A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change[J]. Nature, 2006, 440(7081):165-173.
[31] Wang S C, Wang Z Q, Heinonsalo J, et al. Soil organic carbon stocks and dynamics in a mollisol region:A 1980s-2010s study[J]. Science of the Total Environment, 2022,807:150910.
[32] Schmidt M W I, Torn M S, Abiven S, et al. Persistence of soil organic matter as an ecosystem property[J]. Nature, 2011, 478(7367):49-56.
[33] Yu W J, Weintraub S R, Hall S J. Climatic and geochemical controls on soil carbon at the continental scale:Interactions and thresholds[J]. Global Biogeochemical Cycles, 2021, 35(3):1-5.
[34] 贺伟, 布仁仓, 熊在平, 等. 1961-2005年东北地区气温和降水变化趋势[J]. 生态学报, 2013, 33(2):519-531.
[34] He W, Bu R C, Xiong Z P, et al. Characteristics of temperature and precipitation in Northeastern China from 1961 to 2005[J]. Acta Ecologica Sinica, 2013, 33(2):519-531.
[35] 虞海燕, 刘树华, 赵娜, 等. 1951-2009年中国不同区域气温和降水量变化特征[J]. 气象与环境学报, 2011, 27(4):1-11.
[35] Yu H Y, Liu S H, Zhao N, et al. Characteristics of air temperature and precipitation in different regions of China from 1951 to 2009[J]. Journal of Meteorology and Environment, 2011, 27(4):1-11.
[1] 刘庆宇, 马瑛, 程莉, 沈骁, 张亚峰, 苗国文, 黄强, 韩思琪. 青海东部表层土壤有机碳密度及其空间分布特征[J]. 物探与化探, 2023, 47(4): 1098-1108.
[2] 杨泽, 张一鹤, 戴慧敏, 刘国栋, 刘凯, 许江. 兴凯湖平原表层土壤有机碳空间变异的主控因素[J]. 物探与化探, 2022, 46(5): 1076-1086.
[3] 奚小环, 侯青叶, 杨忠芳, 叶家瑜, 余涛, 夏学齐, 成杭新, 周国华, 姚岚. 基于大数据的中国土壤背景值与基准值及其变化特征研究——写在《中国土壤地球化学参数》出版之际[J]. 物探与化探, 2021, 45(5): 1095-1108.
[4] 王磊, 韩润生, 王加昇. 地球化学勘查的新技术及发展趋势[J]. 物探与化探, 2015, 39(4): 686-690.
[5] 裴发根, 方慧, 袁永真, 仇根根, 白大为, 杜炳锐, 李立. MT成果数据管理系统在岩石圈电性结构研究中的应用——以东北地区为例[J]. 物探与化探, 2014, 38(4): 851-854.
[6] 刘文辉. 甘肃省张掖—永昌地区土壤有机碳密度 估算及其空间分布特征[J]. 物探与化探, 2013, 37(3): 552-556.
[7] 刘文辉, 李春亮, 吴永强. 甘肃省兰州—白银地区土壤有机碳库储量估算与空间分布特征[J]. 物探与化探, 2012, 36(3): 367-371.
[8] 刘庆新, 仲立刚, 孙林. 多目标区域地球化学元素测试分析误差计算与相关问题[J]. 物探与化探, 2007, 31(3): 252-255.
[9] 奚小环. 土壤污染地球化学标准及等级划分问题讨论[J]. 物探与化探, 2006, 30(6): 471-474.
[10] 孔牧. 试论中国东北部森林沼泽景观区化探工作的发展[J]. 物探与化探, 2003, 27(3): 165-166,175.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com