Please wait a minute...
E-mail Alert Rss
 
物探与化探  2021, Vol. 45 Issue (5): 1109-1120    DOI: 10.11720/wtyht.2021.0050
  生态地质调查 本期目录 | 过刊浏览 | 高级检索 |
松辽平原土壤碳库变化及其原因分析
刘国栋1,2(), 李禄军3, 戴慧敏1,2, 许江1,2, 刘凯1,2, 张一鶴1,2, 杨泽1,2()
1.中国地质调查局 沈阳地质调查中心,辽宁 沈阳 110034
2.中国地质调查局 黑土地演化与生态效应重点实验室,辽宁 沈阳 110034
3.中国科学院东北地理与农业生态研究所 黑龙江海伦农田生态系统国家野外科学观测研究站,黑龙江 哈尔滨 150081
Change in soil carbon pool in Songliao Plain and its cause analysis
LIU Guo-Dong1,2(), LI Lu-Jun3, DAI Hui-Min1,2, XU Jiang1,2, LIU Kai1,2, ZHANG Yi-He1,2, YANG Ze1,2()
1. Shenyang Center, China Geological Survey, Shenyang 110034, China
2. Key Laboratory for Evolution and Ecological Effect in Black Land, China Geological Survey, Shenyang 110034, China
3. National Field Observation and Research Station of Hailun Agroecosystems, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
全文: PDF(2743 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

基于东北松辽平原多目标区域地球化学调查数据,计算了表层(0~20 cm)土壤有机碳密度和储量,与全国第二次土壤普查时的土壤有机碳密度进行对比研究,分析了土壤有机碳密度变化的主要影响因素。结果表明:松辽平原不同土壤类型表层土壤有机碳与无机碳构成比例存在明显差异,沼泽土、暗棕壤、泥炭土、白浆土、水稻土、黑土等有机碳含量占土壤总碳含量的90%以上;栗钙土、潮土、风沙土、褐土等土壤有机碳含量占总碳含量80%以下。研究区当前表层土壤有机碳储量约为1 448 Tg,自20世纪80年代以来减少约115.94 Tg,下降了7.4%,其中进入大气估算约为104.88 Tg,占土壤有机碳损失的90.5%。不同土地利用方式中,旱地减少76.12 Tg,对大气贡献CO2最大,其次为盐碱地和草地,分别减少16.32 Tg和15.93 Tg。研究认为,造成土壤碳库减少的主要原因是30年来松辽平原气温的升高,旱地和草地由于温度升高引起的土壤有机碳库减少占总损失的70%,而包括农业生产、土地利用变化、水土流失等因素导致的有机碳减少仅占总损失的30%左右。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘国栋
李禄军
戴慧敏
许江
刘凯
张一鶴
杨泽
关键词 土壤有机碳碳源碳汇松辽平原    
Abstract

Based on the data of the multi-purpose regional geochemical survey in the Songliao Plain, Northeast China,the authors calculated the soil organic carbon density and reservesin surface soil(0~20 cm) and compared them with the soil organic carbon density obtained during the second national soil survey. Then it analyzed the main influencing factors of the distribution and changes of the soil organic carbon density in the plain. The results are as follows. The surface soil of different soil types in the Songliao Plain significantly differ in the proportion of organic and inorganic carbon. Specifically, the organic carbon in swamp soil, dark brown soil, peat soil, albic soil, paddy soil, and black soil accounts for 90% of the total carbon in soils, while that in chestnut soil, fluvo-aquic soil, aeolian sandy soil, and cinnamon soil accounts for less than 80% of the total carbon content. The organic carbon reserves in the surface soil in the study area is about 1,448 Tg at present. It has suffered a loss of about 115.94 Tg since the 1980s, decreasing by 7.4%. About 104.88 Tg (90.5%) of the lost carbon reserves has entered into the atmosphere. In terms of different land use types,the carbon reserves in arid land decreased by 76.12 Tg, which contributed the most CO2 to the atmosphere, followed by the carbon reservesin saline land and grassland, which decreased by 16.32 Tg and 15.93 Tg, respectively. It is considered in this study that the main reason for the decrease in soil carbon pool is the temperature rise in the Songliao Plain in the past 30 years. In detail, the reduction in soil organic carbon pool in arid land and grassland induced by the temperature rise accounted for 70% of the total loss of soil organic carbon pool, while the reduction in organic carbon caused by other factors such as agricultural production, change in land use, and soil erosion accounted for only about 30% of the total organic carbon loss.

Key wordssoil    organic carbon    carbon source    carbon sink    Songliao Plain
收稿日期: 2021-01-25      出版日期: 2021-12-15
:  P591.1  
  P596  
基金资助:中国地质调查局地质调查项目“东北黑土地1∶25万土地质量地球化学调查”(121201007000161312);“兴凯湖平原及松辽平原西部土地质量地球化学调查”(DD20190520)
通讯作者: 杨泽
作者简介: 刘国栋(1983-),男,高级工程师,主要从事生态地球化学研究工作。Email: liuguodong@mail.cgs.gov.cn
引用本文:   
刘国栋, 李禄军, 戴慧敏, 许江, 刘凯, 张一鶴, 杨泽. 松辽平原土壤碳库变化及其原因分析[J]. 物探与化探, 2021, 45(5): 1109-1120.
LIU Guo-Dong, LI Lu-Jun, DAI Hui-Min, XU Jiang, LIU Kai, ZHANG Yi-He, YANG Ze. Change in soil carbon pool in Songliao Plain and its cause analysis. Geophysical and Geochemical Exploration, 2021, 45(5): 1109-1120.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2021.0050      或      https://www.wutanyuhuatan.com/CN/Y2021/V45/I5/1109
Fig.1  研究区土壤类型
Fig.2  研究区土地利用现状(2010年)
用地类型 面积/km2 比例/%
旱地 184164 50.08
林地 58654 15.95
草地 30241 8.22
水田 25619 6.97
建设用地 22096 6.01
沼泽地 17130 4.66
盐碱地 13970 3.80
河流水面 7830 2.13
未利用地 5639 1.53
沙地 2432 0.66
Table1  研究区土地利用类型统计
Fig.3  松辽平原各土壤类型表层(0~20 cm)土壤有机碳(SOC)和无机碳(SIC)含量(a)及其比例(b)
Fig.4  松辽平原表层(0~20 cm)土壤有机碳密度(SOCD)分布
土壤类型 SOCD20/(kg·m-2) SOCD180/(kg·m-2) 面积/km2 SOCS20/Tg SOCS180/Tg
沼泽土 9.24 41.64 9484 87.61 394.89
火山灰土 9.10 46.38 348 3.17 16.14
暗棕壤 7.36 36.86 32124 236.54 1184.08
石质土 6.93 34.93 48 0.33 1.68
泥炭土 6.59 32.30 424 2.80 13.70
城区 5.81 29.03 104 0.60 3.02
黑土 5.22 26.09 45868 239.36 1196.89
白浆土 4.65 23.12 10548 49.01 243.91
草甸土 4.09 20.23 105668 432.61 2137.16
水稻土 3.88 21.22 10988 42.64 233.19
棕壤 2.99 18.93 30692 91.92 581.11
黑钙土 2.99 14.64 45200 135.06 661.67
新积土 2.92 14.79 824 2.40 12.19
沙洲 2.86 19.58 4 0.01 0.08
江河湖泊 2.83 15.10 1648 4.67 24.89
滨海盐土 2.30 15.72 784 1.80 12.32
粗骨土 2.17 13.48 984 2.13 13.26
红黏土 2.14 15.44 164 0.35 2.53
盐土 1.99 10.78 856 1.70 9.22
碱土 1.99 10.52 4104 8.17 43.18
栗钙土 1.78 9.43 10248 18.22 96.66
褐土 1.77 10.92 9748 17.28 106.42
潮土 1.71 9.53 21520 36.84 205.15
风沙土 1.50 8.52 21884 32.73 186.36
总计 364264 1447.97 7379.70
Table 2  松辽平原不同土壤类型土壤有机碳密度及碳储量统计
Fig.5  松辽平原表层(0~20 cm)土壤有机碳密度变化
土地利类型 面积/km2 SOCD/(kg·m-2) 目前总量/Tg ΔSOCD/(kg·m-2) 总变化量/Tg
草地 29964 3.24 96.95 -0.53 -15.93
旱地 184640 3.68 678.80 -0.41 -76.12
河流水面 5688 2.89 16.46 -1.15 -6.55
建设用地 21444 3.40 72.88 -0.39 -8.44
林地 59420 5.53 328.63 0.06 3.32
沙地 2400 0.74 1.78 -0.57 -1.36
水田 24988.00 4.21 105.23 -0.12 -3.12
滩涂 5392 3.52 18.99 -0.59 -3.17
未利用地 156 5.52 0.86 -0.70 -0.11
盐碱地 13832 1.93 26.70 -1.18 -16.32
沼泽地 16340 6.16 100.70 0.72 11.84
合计 364264 3.71 1447.97 -0.44 -115.94
Table 3  各土地利用类型下表层(0~20 cm)土壤有机碳密度及碳库变化
Fig.6  土地利用未变化土壤有机碳密度统计
Fig.7  30年土地利用未变化条件下表层(0~20 cm)土壤有机碳密度变化对比
土地利用变化 ΔSOCD20/(kg·m-2)
开垦0~15年
(1995~2010年)
开垦15~30年
(1980~1995年)
林地→旱地 0.71 -0.49
沼泽地→旱地 1.52 0.47
沼泽地→水田 1.61 0.31
草地→旱地 -0.42 -0.22
旱地→水田 -0.27 0.02
Table 4  土地利用变化后近30年土壤有机碳密度变化
参数 草地 旱地 河流水面 建设用地 林地 沙地 水田 滩涂 未利用土地 盐碱地 沼泽地
MAT -0.580** -0.560** -0.176** -0.355** -0.531** -0.301** -0.441** -0.475** -0.549** -0.292** -0.503**
样本数 7495 46197 1444 5393 14882 600 6260 1357 39 3458 4124
Table 5  多年平均气温MAT与表层(0~20 cm)土壤有机碳密度的相关关系
土地利用类型 面积/km2 目前总量/Tg 总变化量/Tg 温度升高的影响/Tg
草地 29964 96.95 -15.93 -11.15
旱地 184640 678.8 -76.12 -51.8
河流水面 5688 16.46 -6.55 -0.99
建设用地 21444 72.88 -8.44 -2.85
林地 59420 328.63 3.32 -21.42
沙地 2400 1.78 -1.36 -0.76
水田 24988 105.23 -3.12 -5.85
滩涂 5392 18.99 -3.17 -1.26
未利用地 156 0.86 -0.11 -0.06
盐碱地 13832 26.7 -16.32 -3.97
沼泽地 16340 100.7 11.84 -7.41
合计 364264 1447.97 -115.94 -107.52
Table 6  松辽平原气温升高对表层(0~20 cm)土壤碳库变化的影响
[1] 方华军, 杨学明, 张晓平. 东北黑土有机碳储量及其对大气CO2的贡献[J]. 水土保持学报, 2003, 17(3):9-12.
[1] Fang H J, Yang X M, Zhang X P. Organic carbon stock of black soils in northeast China and it’s contribution to atmospheric CO2[J]. Journal of Soil and Water Conservation, 2003, 17(3):9-12.
[2] 丁雪丽, 韩晓增, 乔云发, 等. 农田土壤有机碳固存的主要影响因子及其稳定机制[J]. 土壤通报, 2012, 43(3):737-744.
[2] Ding X L, Han X Z, Qiao Y F, et al. Sequestration of organic carbon in cultivated soils: Main factors and their stabilization mechanisms[J]. Chinese Journal of Soil Science, 2012, 43(3):737-744.
[3] Lal R, Follett R F, Stewart B A, et al. Soil carbon sequestration to mitigate climate change and advance food security[J]. Soil Science, 2007, 172(12):943-956.
doi: 10.1097/ss.0b013e31815cc498
[4] Gulde S, Chung H, Amelung W, et al. Soil carbon saturation controls labile and stable carbon pool dynamics[J]. Soil Science Society of America Journal, 2008, 72(3):605-612.
doi: 10.2136/sssaj2007.0251
[5] Schlesinger W H. Evidence from chronosequence studies for a low carbon-storage potential of soils[J]. Nature, 1990, 348(6298):232-234.
doi: 10.1038/348232a0
[6] 张丽敏, 何腾兵, 徐明岗, 等. 保护性耕作下南方旱地土壤碳氮储量变化[J]. 土壤与作物, 2013, 2(3):112-116.
[6] Zhang L M, He T B, Xu M G, et al. Soil organic carbon and nitrogen stocks under conservation tillage in upland Southern China[J]. Soil and Crop, 2013, 2(3):112-116.
[7] Post W M, Emanuel W R, Zinke P J, et al. Soil carbon pools and world life zones[J]. Nature, 1982, 298(5870):156-159.
doi: 10.1038/298156a0
[8] 苏永中, 赵哈林. 土壤有机碳储量、影响因素及其环境效应的研究进展[J]. 中国沙漠, 2002, 22(3):220-228.
[8] Su Y Z, Zhao H L. Advances in researches on soil organic carbon storages, affecting factors and its environmental effects[J]. Journal of Desert Research, 2002, 22(3):220-228.
[9] Oostv K, Quine T A, Govers G, et al. The impact of agricultural soil erosion on the global carbon cycle[J]. Science, 2007, 318(5850):626-629.
pmid: 17962559
[10] Melillo J M, Steudler P A, Aber J D, et al. Soil warming and carbon-cycle feedbacks to the climate system[J]. Science, 2002, 298(5601):2173-2176.
pmid: 12481133
[11] Austin A, Vivanco L. Plant litter decomposition in a semi-arid ecosystem controlled by photodegradation[J]. Nature, 2006, 442(7102):555-558.
doi: 10.1038/nature05038
[12] Ito A, Oikawa T. A simulation model of the carbon cycle in land ecosystems (Sim-CYCLE): A description based on dry-matter production theory and plot-scale validation[J]. Ecological Modelling, 2002, 151(2-3):143-176.
doi: 10.1016/S0304-3800(01)00473-2
[13] Piao S, Fang J, Ciais P, et al. The carbon balance of terrestrial ecosystems in China[J]. Nature: International Weekly Journal of Science, 2009, 458(9):1009-1013.
[14] Miehle P, Livesley S J, Feikema P M, et al. Assessing productivity and carbon sequestration capacity of Eucalyptus globulus plantations using the process model Forest-DNDC: Calibration and validation[J]. Ecological Modelling, 2006, 192(1-2):83-94.
doi: 10.1016/j.ecolmodel.2005.07.021
[15] Rhee J S, Iamchaturapatr J. Carbon capture and sequestration by a treatment wetland[J]. Ecological Engineering, 2009, 35(3):393-401.
doi: 10.1016/j.ecoleng.2008.10.008
[16] Song G, Li L, Zhang P Q. Topsoil organic carbon storage of China and its loss by cultivation[J]. Biogeochemistry, 2005, 74(1):47-62.
doi: 10.1007/s10533-004-2222-3
[17] Janssens I A, Freibauer A, Schlamadinger B, et al. The carbon budget of terrestrial ecosystems at country-scale: A European case study[J]. Biogeosciences, 2005, 2(1):15-26.
doi: 10.5194/bg-2-15-2005
[18] Marland G, Garten C T, Post W M, et al. Studies on enhancing carbon sequestration in soils[J]. Energy, 2004, 29(9-10):1643-1650.
doi: 10.1016/j.energy.2004.03.066
[19] Jenkinson D S, Adams D E, Wild A. Model estimates of CO2 emissions from soil in response to global warming[J]. Nature, 1991, 351(6324):304-306.
doi: 10.1038/351304a0
[20] 杨忠芳, 夏学齐, 余涛, 等. 内蒙古中北部土壤碳库构成及其影响因素[J]. 地学前缘, 2011, 18(6):1-10.
[20] Yang Z F, Xia X Q, Yu T, et al. Soil carbon pool in the northeast Inner Mongolia and its influencing factors[J]. Earth Science Frontiers, 2011, 18(6):1-10.
[21] 郭晶晶, 夏学齐, 杨忠芳, 等. 长江流域典型区域土壤碳库变化及其影响因素[J]. 地学前缘, 2015, 22(6):241-250.
[21] Guo J J, Xia X Q, Yang Z F, et al. Changes of soil carbon pool in typical areas of Changjiang drainage basin and its influencing factors[J]. Earth Science Frontiers, 2015, 22(6):241-250.
[22] 刘志娟, 杨晓光, 王文峰, 等. 气候变化背景下我国东北三省农业气候资源变化特征[J]. 应用生态学报, 2009, 20(9):2199-2206.
[22] Liu Z J, Yang X G, Wang W F, et al. Characteristics of agricultural climate resources in three provinces of Northeast China under global climate change[J]. Chinese Journal of Applied Ecology, 2009, 20(9):2199-2206.
[23] 范昊明, 蔡强国, 王红闪. 中国东北黑土区土壤侵蚀环境[J]. 水土保持学报, 2004, 18(2):66-70.
[23] Fan H M, Cai G Q, Wang H S. Condition of soil erosion in phaeozem region of Northeast China[J]. Journal of Soil and Water Conservation, 2004, 18(2):66-70.
[24] 李晓燕, 赵广敏, 李宝毅. 我国东北地区土地资源变化态势分析[J]. 水土保持研究, 2010, 17(5):68-74.
[24] Li X Y, Zhao G M, Li B Y. Analysis of changing situation of land resources in Northeast China[J]. Research of Soil and Water Conservation, 2010, 17(5):68-74.
[25] 黑龙江省土地管理局, 黑龙江省土壤普查办公室. 黑龙江土壤[M]. 北京: 农业出版社, 1994:124-126.
[25] Heilongjiang Land Management Bureau, Soil Survey Office of Heilongjiang Province. Heilongjiang soil [M]. Beijing: Agriculture Press, 1994:124-126.
[26] 中华人民共和国国土资源部. DD2005-01 多目标区域地球化学调查规范(1∶250 000)[S]. 北京: 中国标准出版社, 2015,3-21.
[26] Ministry of Land and Resources, PRC. DD2005-01 Specification of multi-purpose regional geochemical survey (1∶250 000) [S]. Beijing: Standards Press of China, 2015, 3-21.
[27] 奚小环, 杨忠芳, 夏学齐, 等. 基于多目标区域地球化学调查的中国土壤碳储量计算方法研究[J]. 地学前缘, 2009, 16(1):194-205.
[27] Xi X H, Yang Z F, Xia X Q, et al. Calculation techniques for soil carbon storage of China based on multi-purpose geochemical survey[J]. Earth Science Frontiers, 2009, 16(1):194-205.
[28] 潘根兴, 李恋卿, 张旭辉, 等. 中国土壤有机碳库量与农业土壤碳固定动态的若干问题[J]. 地球科学进展, 2003, 18(4):609-618.
[28] Pan G X, Li L Q, Zhang X H, et al. Soil organic carbon storage of china and the sequestration dynamics in agricultural lands[J]. Advance in Earth Sciences, 2003, 18(4):609-618.
[29] 王立刚, 邱建军, 马永良, 等. 应用DNDC模型分析施肥与翻耕方式对土壤有机碳含量的长期影响[J]. 中国农业大学学报, 2004, 9(6):15-19.
[29] Wang L G, Qiu J J, Ma Y L, et al. Apply DNDC model to analysis long-term effect of soil organic carbon content under different fertilization and plough mode[J]. Journal of China Agricultural University, 2004, 9(6):15-19.
[30] 朱咏莉, 韩建刚, 吴金水. 农业管理措施对土壤有机碳动态变化的影响[J]. 土壤通报, 2004, 35(5):648-651.
[30] Zhu Y L, Han J G, Wu J S. Effect of agricultural practices on soil organic carbon dynamics[J]. Chinese Journal of Soil Science, 2004, 35(5):648-651.
[31] 李德文, 孟凡祥, 史奕, 等. 农业管理措施对土壤有机碳固存潜力影响的研究进展[J]. 农业系统科学与综合研究, 2005, 21(4):22-25.
[31] Li D W, Meng F X, Shi Y, et al. Research advances in the effect of agricultural management on soil organic carbon sequestration[J]. System Sciences and Comprehensive Studies in Agriculture, 2005, 21(4):22-25.
[32] 任国玉, 郭军, 徐铭志, 等. 近50年中国地面气候变化基本特征[J]. 气象学报, 2005, 63(6):942-956.
[32] Ren G Y, Guo J, Xu M Z, et al. Climate changes of China’s mainland over the past half century[J]. Acta Meteorologica Sinica, 2005, 63(6):942-956.
[33] Xia X, Yang Z, Liao Y, et al. Temporal variation of soil carbon stock and its controlling factors over the last two decades on the southern Song-nen Plain, Heilongjiang Province[J]. Geoscience Frontiers, 2010, 1(1):125-132.
doi: 10.1016/j.gsf.2010.07.003
[34] Jong E D, Kachanoski R G. The importance of erosion in the carbon balanceofprairie soils[J]. Canadian Journal of Soil Science, 1988, 68(1):111-119.
doi: 10.4141/cjss88-010
[35] 刘嘉麒, 李泽椿, 秦小光. 东北地区有关水土资源配置、生态与环境保护和可持续发展的若干战略问题研究(自然历史卷)[M]. 北京: 科学出版社, 2007,500-502.
[35] Liu J Q, Li Z C, Qin X G. Study on some strategic issues related to allocation of soil and water resources, ecological and environmental protection and sustainable development in northeast China (natural history volume) [M]. Beijing: Science Press, 2007, 500-502.
[1] 王志强, 杨建锋, 魏丽馨, 石天池, 曹园园. 石嘴山地区碱性土壤硒地球化学特征及生物有效性[J]. 物探与化探, 2022, 46(1): 229-237.
[2] 赵筱媛, 杨忠芳, 程惠怡, 马旭东, 王珏, 李志坤, 王琛, 李明辉, 雷风华. 四川邻水县华蓥山—西槽土壤Cu地球化学特征与生态健康[J]. 物探与化探, 2022, 46(1): 238-249.
[3] 孟伟, 莫春虎, 刘应忠. 黔西北地区土壤重金属地球化学背景及管理目标值[J]. 物探与化探, 2022, 46(1): 250-257.
[4] 李建亭, 刘雪敏, 王学求, 韩志轩, 江瑶. 地表土壤微细粒测量中微量元素和同位素对福建罗卜岭隐伏铜钼矿床的示踪与判别[J]. 物探与化探, 2022, 46(1): 32-45.
[5] 张春来, 杨慧, 黄芬, 曹建华. 广西马山县岩溶区土壤硒含量分布及影响因素研究[J]. 物探与化探, 2021, 45(6): 1497-1503.
[6] 奚小环, 侯青叶, 杨忠芳, 叶家瑜, 余涛, 夏学齐, 成杭新, 周国华, 姚岚. 基于大数据的中国土壤背景值与基准值及其变化特征研究——写在《中国土壤地球化学参数》出版之际[J]. 物探与化探, 2021, 45(5): 1095-1108.
[7] 侯佳渝, 杨耀栋, 程绪江. 天津市城区不同功能区绿地土壤重金属分布特征及来源研究[J]. 物探与化探, 2021, 45(5): 1130-1134.
[8] 肖高强, 向龙洲, 代达龙, 高晓红, 宗庆霞. 花岗质岩浆岩土壤重金属地球化学特征及生态风险评价——以云南盈江旧城—姐冒地区为例[J]. 物探与化探, 2021, 45(5): 1135-1146.
[9] 刘道荣, 焦森. 天然富硒土壤成因分类研究及开发适宜性评价[J]. 物探与化探, 2021, 45(5): 1157-1163.
[10] 解庆锋, 周小果, 王振峰, 马振波, 李胜昌, 张得恩, 司法祯. 河南省土壤环境监测背景点位布设参考区域划分研究[J]. 物探与化探, 2021, 45(5): 1164-1170.
[11] 雷波, 兰明, 贺锋, 鲁宝龙, 罗才武. 基于熵—中位数子区滤波提取土壤氡气浓度异常——以甘肃省花海盆地为例[J]. 物探与化探, 2021, 45(4): 1064-1070.
[12] 刘伟, 黄韬, 王庭勇, 刘怡, 张继, 刘文涛, 张琦斌, 李强. 综合物探方法在城市隐伏断裂探测中的应用[J]. 物探与化探, 2021, 45(4): 1077-1087.
[13] 史琪, 赵延朋, 迟占东, 葛华, 康铁锁, 李发兴, 魏翔宇, 卢见昆, 杨人毅. 老挝川圹省约俄锡多金属矿区沟系土壤地球化学特征及成矿预测[J]. 物探与化探, 2021, 45(4): 824-834.
[14] 窦备, 张必敏, 叶荣, 迟清华. 黄土覆盖区隐伏矿地球化学勘查技术试验研究——以河南中河堤银铅锌多金属矿为例[J]. 物探与化探, 2021, 45(4): 933-941.
[15] 吴兴盛. 福建省武平县富硒土壤特征及成因分析[J]. 物探与化探, 2021, 45(3): 778-784.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com